	Digital module requirement specification
7-22

Digital module requirement specification

Document name: TOR specification
Revision:
 0.2
Date:

Created on 8/29/2008 3:17:00 PM
Author:

Created by Lijiao Liu

Last saved by LASTSAVEDBY
Module:

TOR Module
	[image: image22.emf]DCS

Block Diagram

Bus

controller

Control and

status

register

TRU

L0 Trigger and Data receiver

L0 process

TOR

Signal from DCS

Signal from TRU

L1 generatror

Trigger

Output logic

L0/L1 Trigger to CTP

Trigger

decode

module

Trigger from TTC

Validated L0

Programmable parameter

Programmable threshold

	Features:

· The communication between TRU and TOR is at 200MHZ with data-trobe encoding .
· TOR communications with DCS by Buscontroller Module.
· Each trigger has its own output logic.

·

31
Document control

31.1
Revision history

31.2
References

42
External Interface

Document control

1.1 Revision history

	Rev.
	Rev. date
	Document status
	Responsible

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

1.2 References

	Ref. No.
	Doc. Name.
	Rev / Rev date
	Title

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

External Interface

1.3 Generic interface

	Generic name
	Type
	Legal range
	Default value
	Description

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

Table 2-1: Generic interface

1.4 Signal interface

	Signal name
	Dir
	Sync

	Description

	clk_crystal
	In
	-
	Local clock 40MHZ

	dcs_a2_clk_1p
	In
	-
	LHC clock 40MHZ ,positive

	dcs_a1_clk_1n
	In
	-
	LHC clock 40MHZ ,negative

	areset_n
	In
	Async
	Async reset

	dcs_addr
	In
	Async
	Address of register

	dcs_data
	inout
	CLK
	Data of register

	dcs_strobe_n
	in
	Async
	Strobe

	dcs_rnw
	in
	Async
	R,W Enable

	mode_select_0
	in
	Async
	

	mode_select_1
	in
	Async
	

	ucon_front_p
	out
	CLK
	Trigger output,LVDS positive

	ucon_front_n
	out
	CLK
	Trigger output,LVDS negative

	lcon_front_p
	out
	CLK
	

	lcon_front_n
	out
	CLK
	

	ucon_rear_p
	out
	CLK
	

	ucon_rear_n
	out
	CLK
	

	lcon_front_p
	out
	CLK
	

	lcon_front_n
	out
	CLK
	

	dcs_ack_n
	out
	CLK
	Ack signal from TOR

	Led_1
	out
	
	

	Led_2
	out
	
	

	Led_3
	out
	
	

	Led_4
	out
	
	

	Led_5
	out
	
	

	Led_6
	out
	
	

	Led_7
	out
	
	

	Led_8
	out
	
	

	Led_9
	out
	
	

Table 2-2: Signal interface

1.5 Timing diagrams

[image: image1.emf]
Figure 3-1: RCU bus protocol. First 0xDEADBEEF is written to register 0x7000, and then it is read back afterwards.
[image: image2.png]Trigger output waveforms

253

s
Bc UL UL L L L UL LU LULLrULLLLL
e Option Code = 0 (normal trigger output)
ricomex @ L s LT
® LT
Option Code=1 (ogeling ovtput - tigger signal snchwonisation)
TRIGGER N
Option Code =2 (wausmmision ofth tigger sigasture - tigger ioput veriication)
TRIGGER_ N)
Ll 0110001
Common Feader Trigger Signanre

(@ i, 501100017 adbis, m13507)

Figure 3-2:Signal waveforms of trigger output logic

2 Register interface

	Register name
	Address
	Type

	Description

	Trig0_OptionCode
	0x00
	R/W
	Used for the selection of trigger0 output options

	Trig0_Signature
	0x01
	R/W
	Signature of Trigger0

	Trig0_MessageHeader
	0x02
	R/W
	Message Header of Trigger0

	Trig0_Prog_Rate_Low
	0x03
	R/W
	Low 16bits of Programmable Rate for Trigger0

	Trig0_Prog_Rate_High
	0x04
	R/W
	High15bits of Programmable Rate for Trigger0

	Trig0_Prog_Delay
	0x05
	R/W
	Programmable Delay for Trigger0

Table 3-1:Registers for Trigger0
	Register name
	Address
	Type

	Description

	Trig1L_OptionCode
	0x06
	R/W
	Used for the selection of trigger1L output options

	Trig1L_Signature
	0x07
	R/W
	Signature of Trigger1L

	Trig1L_MessageHeader
	0x08
	R/W
	Message Header of Trigger1L

	Trig1L_Prog_Rate_Low
	0x09
	R/W
	Low 16bits of Programmable Rate for Trigger1L

	Trig1L_Prog_Rate_High
	0x0A
	R/W
	High15bits of Programmable Rate for Trigger1L

	Trig1L_Prog_Delay
	0x0B
	R/W
	Programmable Delay for Trigger1L

Table 3-2:Registers for Trigger1L
	Register name
	Address
	Type

	Description

	Trig1M_OptionCode
	0x0C
	R/W
	Used for the selection of trigger1M output options

	Trig1M_Signature
	0x0D
	R/W
	Signature of Trigger1M

	Trig1M_MessageHeader
	0x0E
	R/W
	Message Header of Trigger1M

	Trig1M_Prog_Rate_Low
	0x0F
	R/W
	Low 16bits of Programmable Rate for Trigger1M

	Trig1M_Prog_Rate_High
	0x10
	R/W
	High15bits of Programmable Rate for Trigger1M

	Trig1M_Prog_Delay
	0x11
	R/W
	Programmable Delay for Trigger1M

Table 3-3:Registers for Trigger1M
	Register name
	Address
	Type

	Description

	Trig1H_OptionCode
	0x12
	R/W
	Used for the selection of trigger1H output options

	Trig1H_Signature
	0x13
	R/W
	Signature of Trigger1H

	Trig1H_MessageHeader
	0x14
	R/W
	Message Header of Trigger1H

	Trig1H_Prog_Rate_Low
	0x15
	R/W
	Low 16bits of Programmable Rate for Trigger1H

	Trig1H_Prog_Rate_High
	0x16
	R/W
	High15bits of Programmable Rate for Trigger1H

	Trig1H_Prog_Delay
	0x17
	R/W
	Programmable Delay for Trigger1H

Table 3-4:Registers for Trigger1H
	Register name
	Address
	Type

	Description

	Thre1
	0x18
	R/W
	Threshold 1 for L1L

	Thre2
	0x19
	R/W
	Threshold 1 for L1M

	Thre3
	0x1a
	R/W
	Threshold 1 for L1H

	Mask_array12
	0x1b
	R/W
	L0 trigger Mask for module 2 and 1(high 8bits for 2)

	Mask_array34
	0x1c
	R/W
	L0 trigger Mask for module 4 and 3(high 8bits for 4)

	Mask_array5
	0x1d
	R/W
	L0 trigger Mask for module 5

	Ctrl_reserve_r
	0x1e
	R/W
	Reserved control reg,bit 0 is used for L1 test.

Table 3-5:General registers
	Register name
	Address
	Type

	Description

	Counter1
	0x1f
	R
	The low 16 bits for L0 counter

	Counter2
	0x20
	R
	The high 16 bits for L0 counter

	Counter3
	0x21
	R
	The low 16 bits for L1L counter

	Counter4
	0x22
	R
	The high 16 bits for L1L counter

	Counter5
	0x23
	R
	The low 16 bits for L1M counter

	Counter6
	0x24
	R
	The high 16 bits for L1M counter

	Counter7
	0x25
	R
	The low 16 bits for L1H counter

	Counter8
	0x26
	R
	The high 16 bits for L1H counter

Table 3-6:Counter of Trigger 0 from TRU

3 Functional requirements
3.1 Functional overview
 PHOS has 5 modules, each has 8 TRUs,Each TRU deal with 28x32 crystals. There might be signal missing in the adjacent TRU for one module, therefore, in order to generate level1 trigger, TOR needs to receive data coming from 40 TRUs and do spacesum during 1 modules, each TRU is connected with TOR by network cable via one RJ45.
 If there is L0 trigger in TRU, it transfers the spacesum data to TOR, TOR finds the maximum and compares it with threshold1, threshold2, threshold3 and generates a L1 trigger.When TOR receives the validated L0 from CTP, L1 trigger is sent to CTP.

 There are three kinds of data to transmit,L0,timesum data and spacesum data.There are one L0, 112 timesum data and 91 spacesum data in total for each TRU, L0 is just one pulse, timesum data has 12 bits, whereas spacesum data has 14 bits. They must be sent as soon as possible to fit the latency, the frequency is up to 280MHZ because of the limitation of FPGA.
3.2 Receiving trigger and Data from TRU and generate Triggers

[image: image3.emf]1module

 Figure 4-1 one module with 40 TRU in it

[image: image4.emf]TRU

:: :: :: :: ::

::

:: ::

::

::

:: :: ::

:: :: :: :: :: :: :: ::

:: ::

::

:: :: :: :: ::

:: :: :: ::

:: ::

:: ::

:: :: ::

:: :: :: :: ::

::

:: ::

::

::

:: :: ::

:: :: :: :: :: :: :: ::

:: ::

::

:: :: :: :: ::

:: :: :: ::

:: ::

:: ::

:: :: ::

::

:: ::

::

::

:: :: ::

:: :: :: :: ::

::

:: ::

::

::

:: :: ::

:: :: :: :: :: :: :: ::

:: ::

::

:: :: :: :: ::

:: :: :: ::

:: ::

:: ::

:: :: ::

 Figure 4-2 one TRU dealing with 28 x 16 crystal signal

 There are 5 module in total, each module contains 56 x 64 crystals.8 TRU collect the Fast_OR data for one module, which means one TRU covers 28 x 16 crystals, namely 14 x 8 Fast_OR data/timesum data. Fast_OR data are sampled by ADC located in TRU and then time sum and space sum(4 times 4 crystals).Time sum data are 12 bits, space sum data are 14 bits.
If we transmit time sum data, and then do space sum over 5module,for each TRU, there are 14x8x12 bits to transmit. We have four twisted pair which can transmit two DS(data strobe) simultaneously, so if we transmit 14x8x12 bits at 280M with two DS, it takes at least 2.4 us. Assume we space sum all the data one time(if it’s possible, but probably not),it takes at least two clock cycles ,which is 0.05 us. After space sum ,(140-1) x (64-1) = 8757 space sum data are acquired, they must be compared one by one and 8756 clock cycles are needed, namely 437.8 us, it’s impossible for our case. Another option is that 63 comparators work at the same time, which needs (63+139)= 202 clock cycles, namely 5.05 us. All in all, the time is 2.4+0.05+5.05= 7.5 > 6.2 which is the fixed latency of L1 trigger to CTP.
The diagram for this process is like this:

[image: image5.emf]Receiver

spacesum Comparator

280M 40M

40M

0us 2.4us+0.05us+5.05us

2.4us+0.05us

2.4us

280M

Figure 4-3 time cost for transmitting time sum data
If we transmit space sum data and part of time sum data needed, for one TRU, there are 91 space sum data and 40 time sum data to transmit,40 time sum data are transmitted firstly, in order to make the receiver easy, time sum data are also 14 bits ,it takes (40/2 x14/280=1 us),then space sum data is transmitted subsequently, meanwhile, the time sum data can be done space sum. Moreover, when the space sum data is been receiving, they can be compared at the same time, the total time consumed is 5.7 us ,the diagram looks like the following figure 4-4.
 Although the time seems much less, the complexity of coding increases rapidly. And in this case, the time is also tight, because I assumed the data is transmitted continuously without any silence, actually it’s impossible.

.
 Figure 4-4 time cost for transmitting both time sum data and space sum data
So the third option is keep a list in theTRU and transfer the spacesum data and the corresponding address of that is greater than threshold.
This option reduce the quantity of data to be transferred , so it's feasible.
3.3
Serial link concept
 One critical part is communication.
 Figure 4-5 shows the link of TRU and TOR . Each TRU connects TOR with one RJ45 containing 4 twisted pairs, the L0 , Data and Strobe takes one pair respectively.

 In total there are (14-1)*(8-1) = 91 space sum data for one TRU. If the occupancy is average 10%~20%, so generally there are 10~20 space sum data to be transferred.

Each address has 7 bits(4bits for row and 3 bits for column),so in total, the data package has at least 14+7=21 bits. In order to make receiver easy, we take 22 bits per word.

[image: image7.emf]L0_gene

receiver1

receiver8

Seq_compare

Seq_compare

Multi_level_

compare

L1_gene

L1_out_logic

L0_out_logic

TRU

39 L0 from other TRUs

7

c

h

a

n

n

e

l

s

f

r

o

m

o

t

h

e

r

7

T

R

U

s

.

.

.

.

.

.

Multi_level_

compare

4

c

h

a

n

n

e

l

s

f

o

r

o

t

h

e

r

4

m

o

d

u

l

e

s

L0 to CTP

L1 to CTP

L0

Data

Strobe

Figure 4-5. the link of TRU and TOR

The diagram for a 22 bit serial receiver is as figure 4-6 shows:

[image: image8.emf]xor

Posedge Shift

register(11bits)

Negedge Shift

register(11bits)

Strobe

Data

Recovered clk

Data

Data

Pneg shift

Recovered clk

Register(22bits)

Register(22bits)

Data

7

7

14

Clk(Local 280M)

Ppos shift

FSM1

(global)

Clk(Local 280M)

Figure 4-6 single data receiver
 In order to be fault tolerant we need some word-to-word distance (silent link) or packet-to-packet distance. If we send one word at a time we loose overall link capacity since we need at least 3 silent “bits” per word, in addition, we need two stop bits at a time for stable transmission , which means 27 clock cycles for one 22-bit-word. If we choose 200MHZ clock to transmit word by word, it needs 2.7 us to transmit 20 word.
The word receiver works on the recovered clock which is required by simple xor the coming data and strobe. One 11-bit-posedge shift register sample data at the rising edge of recovered clock, another 11-bit-negedge shift register sample data at the falling edge of recovered clock. The whole word is registered by a 22-bit-data register at the rising edge of recovered clock. Two position register indicate the position of valid bit arrive, we take it as one of the condition to decide that if the data is transmitted completely.
In order to detect the frequency of transmissiong and the “silent bits”, we design a test code to test it.The block diagram is as follows:

[image: image9.emf]Sender(

sx_ds)

rx_ds

Receiver(wrapped_

rx_ds)

dssipo

strobe

sdata

wrapper_sx_rx_ds_word

Random

testvector

Generator

verification

sx_rx_ds_word_tb

arst_n

ctp_l0

err_out

data_right

data_out

Figure 4-7 block diagram for test bench

 In this code, sender, rx_ds, wrapped_rx_ds, random test vector generator and verification work at local high frequency clock, dssipo works at recovered clock, which is the half of local frequency. Random test vector generates some random pattern and ctp_l0 signal, when ctp_l0 is valid, sender starts to send data, verification compare the received data with test pattern, if they are the same, an OK signal is asserted and the right data is put out.

The num of silent clock cycles can be adjusted by change distance of two ctp_l0. Because of the chip is virtex 2 and virtex 4,the highest frequency it can reach is 300MHZ,so the highest frequency we test is 300MHZ.

When the silent clock cycles are three, the local frequency is 300MHZ, the cable is 15 meters, the communication is perfect. 20 meters cable doesn’t work.
 In this case,the distance between two data packets needs at least 5 clock cycles(two stop states,three silent states)
 The following is the state transfer diagram of receiver.:

[image: image10.emf]Idle_s Start_s

Wait_s

Error_s

Reset_s

Load_s

Ppos0_reg = 1

Pneg6_reg = 1 and cnt_reg <= 12

 cnt_reg > 12

cnt_reg = 3

 Figure 4-8 receiver state transfer diagram(there is silent cycle)

 If we make the communication work at 200 MHZ, 20 22-bit packages will be transfer completely in 2.7 μs with one data strobe pair which needs two twisted pair.

So the time is enough to transfer just element that is greater than threshold in the TRU.
The packet format is as the following table:

	Numer of words
	2stops and 3 silences
	The first data
	2stops and 3 silences
	…
	The Last data
	2stops and 3 silences

	22bits
	5 clks
	22bits
	5 clks
	
	22bits
	5 clks

The first word is the num_of_words, the following words are the data to be transferred.

 The following figure describes the state machine transfer of the receiver in Fig 4-5
[image: image11.png]ppoS0_teg

unsigned(cnt_reg) > 10

cnbe
ent Jrs== nfi_re!

entJw_rst
entlnb st
sipg_rét <=1
st

’ (nsigned(nt_reg
unsigned(cnt_T_reg) < unsignednv_teg)’

unsigned(ent_reg) < 10
and pposo_reg

1

ent_nb_en <=

2

unsigned(cnt_nb_reg) >num_of_bits{]

0or e

and unsigned(ent_mw_req)

unsigned(nfw_teg) 1

not((unsigned(ntw_reg) = 0) or unsigned(crt_nw_reg) < unsigned(nw_ref)+1)

not((unsignedniw_reg)
and unsigned(ent_mw_reg)

) or unsigned(ent_mw_reg) < unsigned(nfw_re
unsigned(nfw_reg)+ 1

cnt_rst<="1"

unsigned(cnt_nb_reg) <= num_of_bits;
and pregs_reg =

crit_nw_en

3.4 find the maximum

 The block diagram of find the maximum among N data is as figure 4-10:

The data are stored in ram or array, then they are read out and compared sequentially.
If there are N data, at least N-1 clock cycles are required to finish the comparison, so in order to save time, we can divide them into M group and make them work parallel, for each group we can get a maximum. Finally we find the maximum among M group. This process is as figure 4-12.

[image: image12.emf]Ram/array

data1

counter

data2

comparator Larger_temp

data_reg

FSM

data_out

addr

clk

clk

clk

clk

clk

data_in_array

dr_reg

clk

dr_in_array

dr_out

Find_max.vhd

 Figure 4-10 find the maximum among N data

[image: image13.png]condition

condition

dr_array_reg = al_one

en <="1
Td_first <="1
1d_data2 <

condition

tnt_en <="1"
Id_temp<="1"

1d_dataZ <=
unsigned(cnt_ren) = num_of data-1

 Figure 4-11 states transfer diagram

[image: image14.emf]Find_max1

find_max7

clk

data_in_array1

dr_in_array1

parallel_comparator

Find_max2

Find_max6

Find_max5

Find_max4

Find_max3

data_in_array2

dr_in_array2

data_in_array3

dr_in_array3

data_in_array4

dr_in_array4

data_in_array5

dr_in_array5

data_in_array6

arst_n

 Figure 4-12 parallel comparator
3.5 The resource consumed

 As we have calculated, if we just send time sum data and then do space sum and find the maximum in TOR , the time cost is over the latency, but if the comparator works at 80MHZ,the time cost is 2.4+0.05+2.525=4.975(us),which satisfies the time requirement.

 In total 5 module,(140-1)*(64-1)=8757 space sum data must be generated in TOR, each space sum need 23 slices and 35 LUTs, so for 8757 space sum, 201411slices and 306495 LUTs in all are required.
 In order to find the maximum of them, 63 139-deep comparator are needed, which means slices 63962 and 118216 LUTs are needed.
 Combining space sum requirements, 265373 slices and 424722 LUTs in total are needed, which is far more than the available 18432 slices and 36864 LUTs.

 If we send both space sum data and boundary time sum data,696 space sum data must be calculated in TOR, which needs 23*696=16008 slices and 24360 LUTs.
 And these space sum data can be divided into 24 groups, each comprises 28-deep comparator, so 6272 slices and 2377 4-input LUTs are required.

 Each TRU has 91 space sum data, which are divided into two groups to transmit, for each group, 46-deep comparators are needed, which means 482 slices and 927 4-input LUTs are needed. So in total, 482*2*40= 38560 slices and 74160 4-input LUTs are required. For each TRU, two maximum of original space sum data are got, another one comparator which occupies 14 slice and 28 LUTs is needed to get the larger one among two maximum, for 40 TRU, that’s 14*40 =560 slices and 1120 4-input TRU.

Finally, the maximum original space sum data among 40 TRU must be calculated, which needs a 40-deep comparator costing 412 slices and 786 4-input LUTs.
 So for this case, 38560+560+412=39532 slices
 74160+1120+786=76066 4-input LUTs.
 It is also far more than available resources in TOR.

I’m thinking about improving the find_max.vhd to make it consume few resources.

I just curious why it occupies so many resources, as I think, it comprise only one 14-bit comparator and a state machine.

3.6 Trigger output logic
There are many triggers going into CTP,so each trigger should has its own signature, then when there is no real trigger going into CTP,it needs a random trigger to test.So there are 4 modes in the logic.The selection of trigger ouput options (normal,toggle,signature,etc.) shall be controlled by the CTP software via a DIM server.

[image: image15.png]FPGA. trigger sub-detector front-end electronics. I

Generator of the Trigger Signature data stream

i
[Comrenmuie 1
10-bit binary counter i

i

&m

Counter=0

] 2525 puse 2508 pero

Trigger Signature Massage Header
a4vis) @us om0y |}

1 13
Ted DI Pambed DO ot

smatn
smfrensiie

shifront

t PISO shift

ister

Random
rigger
gemerator

TRIGGER_IN —
BC—

Trigger output waveforms
e
Bc UL UL UL L UL AL LAULL L
e Option Code = 0 (aorma wigger output)
i@ L s LT
® LT
Option Code=1 (ogeling ovtput - tigger signal snchwonisation)
TRIGGER N

Option Code = (transmission of the trigger signature - trigger input verification)

TRIGGER N I LT
10110001

Common Header Trigger Signafure
(@it B"10110001%) @i E13597)

Figure 4-2: Block diagram and signal waveforms of trigger output logic

3.7 Synchronize with CTP
It’s the system requirement that the Trigger output should be synchronized with LHC 40MHZ clock.
[image: image23.emf]DCS

Block Diagram

Bus

controller

Control and

status

register

TRU

L0 Trigger and Data receiver

L0 process

TOR

Signal from DCS

Signal from TRU

L1 generatror

Trigger

Output logic

L0/L1 Trigger to CTP

Trigger

decode

module

Trigger from TTC

Validated L0

Programmable parameter

Programmable threshold

[image: image16]
3.8 Functional details

3.8.1 Main output signals

<explain the functionality of the main output signals if any. >

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

The signals are explained in Table 2-2.
3.8.2 Top Module
<Explain the different modules as given in the block diagram>
3.8.3 Communication Module

This module is in progress.

The following is receiver.

[image: image17.emf]xor

Posedge Shift

register(7bits)

Negedge Shift

register(7bits)

Strobe

Data

Recovered clk

Data

Data

Pneg shift

Recovered clk

Register(14bits)

Register(14bits)

Data

7

7

14

Clk(Local 280M)

Ppos shift

FSM1

(global)

Clk(Local 280M)

Now,I’m trying to work on this module.Firstly,I will try send and receive both in TOR and find the best solution.
Sender : When it receives ctp_l0 signal,it starts to send one data which is 14 bits.

Receiver: When the ppos_reg comes,it starts to receive.

The implementation diagram looks like this:

[image: image18.emf]Sender(

sx_ds)

rx_ds

Receiver(wrapped_

rx_ds)

dssipo

strobe

sdata

wrapper_sx_rx_ds_word

Random

testvector

Generator

verification

sx_rx_ds_word_tb

arst_n

ctp_l0

err_flag_out

err_out

It works at 280MHZ in post simulation.
3.8.4 Trigger Generate Module
This module is untouched.
The block diagram is like this:

[image: image19.emf]RAM(91

spacesum) for

one TRU

L0 FSM1

(global)

RAM(40

timesum) for one

TRU

FSM2

(spacesum

for bound)

Find the max

among 91

space sum

Boundry

space sum

and find the

max

Find the

max among

40TRU

RAM (40 timesum)For)Neighbers

Generate

level 0

trigger

Generate

level 1

trigger

3.8.5 Trigger output logic Module

This module is done according to Figure 4-2.
It consists Random_trig_generator module,Signature and Multiplexer_2_4 submodules.
Therein,Random_trig_generator module looks like this:

[image: image20.png]31-bit SIPO shift register 31-bit register

BC —»pclock Random
Enable——)| enable number Programmable rate
shift in generator
parallel output output
q[30..0] q[30..0]
Comparator

Random trigger output

3.8.6 CLK Module
In this block,we have two CLK inputs,when there is no DCS CLK,we select Local CLK.And also we have a led to indicate if we use DCS CLK.

The critical thing is decision if DCS CLK exist.I tried to make use of Locked signal of DCM output.It seems not work.

What I do is like this:

[image: image21.emf]NOR

0

1

clkin

clkin

sel

Local_CLK_DCM

DCS_CLK_DCM

Mul2_1

CLK

rst

DCS_CLk_P

DCS_CLk_N

Local CLK

3.8.7 Bus controller Module

This Module is done according to Figure 3-1,what’s more,registers in Section 3 are included.
3.8.8 Trigger counter

 This module calculate the number of trigger 0 from each TRU.The triggers are counted in 1 second and read by DCS.
3.8.9 Other requirements

3.9 Clock strategy

3.10 Reset strategy

3.11 Power strategy

3.12 Test strategy

3.12.1 Functional test

3.12.2 Scan test

� EMBED Visio.Drawing.11 ���

CLK BLOCK

Local CLK

 CLK coming from DCS

CLK output

� 	Inputs: 	<clock name>|async: Assumed synchronous with the given clock name or asynchronous

	Ouputs: <clock_name>[glitch free]|comb: Output generated from the given clock name or combinatorial

� Legend: W=write, R=read, T= write trigger (not physical registers)

� Legend: W=write, R=read, T= write trigger (not physical registers)

� Legend: W=write, R=read, T= write trigger (not physical registers)

� Legend: W=write, R=read, T= write trigger (not physical registers)

� Legend: W=write, R=read, T= write trigger (not physical registers)

� Legend: W=write, R=read, T= write trigger (not physical registers)

	TOR specification020309.doc
Created by lli003

_1297785245.vsd
Title
￼

Receiver

spacesum

Comparator

280M

40M

40M

0us

2.4us+0.05us+5.05us

2.4us+0.05us

2.4us

280M

_1302871536.vsd
Title
￼

L0_gene

receiver1

receiver8

Seq_compare

Seq_compare

Multi_level_compare

L1_gene

L1_out_logic

L0_out_logic

TRU

39 L0 from other TRUs

7 channels from other 7 TRUs

...

...

Multi_level_compare

4 channels for other 4 modules

L0 to CTP

L1 to CTP

L0

Data

Strobe

_1302872289.vsd
xor

Posedge Shift register(11bits)

Negedge Shift register(11bits)

Register(22bits)

Strobe

Data

Recovered clk

Data

Data

Pneg shift

Register(22bits)

Data

7

7

Recovered clk

14

Clk(Local 280M)

Ppos shift

FSM1
(global)

Clk(Local 280M)

_1298801179.vsd
Title
￼

Ram/array

data1

counter

data2

comparator

Larger_temp

data_reg

FSM

data_out

addr

clk

clk

clk

clk

clk

data_in_array

dr_reg

clk

dr_in_array

dr_out

Find_max.vhd

_1298815762

_1302868336.vsd
Title
￼

DCS

Block Diagram

Bus controller

Trigger Output logic

Control and status register

TRU

L0 Trigger and Data receiver

L0 process

TOR

Signal from DCS

Signal from TRU

L1 generatror

L0/L1 Trigger to CTP

Trigger decode module

Trigger from TTC

Validated L0

Programmable parameter

Programmable threshold

_1298802423.vsd
Title
￼

Find_max1

Find_max6

Find_max5

data_in_array2

dr_in_array2

data_in_array3

dr_in_array3

find_max7

Find_max4

data_in_array4

dr_in_array4

Find_max3

arst_n

data_in_array5

dr_in_array5

clk

data_in_array6

data_in_array1

dr_in_array1

parallel_comparator

Find_max2

_1297787785.vsd
Title
￼

Compare and store the bigger

Space sum boundary and compare (669)
66 boundry run parallelly
13*0.025= 0.325 us

3.35us

first spacesum data

Find the max among boundry (66 boundary + 27 corner data)
93*0.025=2.325us

3.65us

Timesum :40
For one data line ,it transfer 20,so it needs 1us

Data and Strobe

46 st spacesum data

Compare and store the bigger

0

0us

1us

timesum data

1.05us

3.4us

40MHZ

4.425us

Timesum :91
For one data line ,it transfer 46,so it needs 2.3us

3.65us

Generate trigger 1

4.5us

66 boundry 27 corner(40MHZ)
2.325

Find the max among five module

Find original spacesum data among five module(40+1)*0.025 = 1.025us

4.45us

3.65us

80 max data for 40 TRU,They should be compared by two level (40+1)*0.25 = 1.025us

The frequency for transmit is 280MHZ

_1297543714.vsd
Title
￼

::

::

::

::

::

::

::

::

::

::

::

::

::

::

::

::

::

::

::

::

::

::

::

::

::

::

::

::

::

::

::

::

::

::

::

::

::

::

::

::

::

::

::

::

::

::

::

::

::

::

::

TRU

_1297553708.vsd
Title
￼

Idle_s

Start_s

Wait_s

Error_s

Reset_s

Load_s

Ppos0_reg = 1

Pneg6_reg = 1 and cnt_reg <= 12

 cnt_reg > 12

cnt_reg = 3

_1297783881.vsd
Title
￼

Sender(sx_ds)

rx_ds

Receiver(wrapped_
rx_ds)

dssipo

strobe

sdata

wrapper_sx_rx_ds_word

Random testvector
Generator

verification

sx_rx_ds_word_tb

arst_n

ctp_l0

err_out

data_right

data_out

_1297549672.vsd
Title
￼

Compare and store the bigger

Space sum boundary and compare (669)
66 boundry run parallelly
13*0.025= 0.325 us

4.55us

first spacesum data

Find the max among boundry (66 boundary + 27 corner data)
93*0.025=2.325us

4.85us

Timesum :40
For one data line ,it transfer 20,so it needs 1us

Data and Strobe

46 st spacesum data

Compare and store the bigger

0

1.2us

1.2us+1us=2.2us

timesum data

2.25us

4.6us

40MHZ

5.625us

Timesum :91
For one data line ,it transfer 46,so it needs 2.3us

4.85us

Generate trigger 1

5.7us

66 boundry 27 corner(40MHZ)
2.325

Find the max among five module

Find original spacesum data among five module(40+1)*0.025 = 1.025us

5.65us

4.85us

80 max data for 40 TRU,They should be compared by two level (40+1)*0.25 = 1.025us

_1296990057.vsd
Title
￼

Sender(sx_ds)

rx_ds

Receiver(wrapped_
rx_ds)

dssipo

strobe

sdata

wrapper_sx_rx_ds_word

Random testvector
Generator

verification

sx_rx_ds_word_tb

arst_n

ctp_l0

err_flag_out

err_out

_1297531196.vsd
Title
￼

_1296917693.vsd
xor

Posedge Shift register(7bits)

Negedge Shift register(7bits)

Strobe

Data

Recovered clk

Data

Data

Pneg shift

Recovered clk

Register(14bits)

Register(14bits)

Data

7

7

14

Clk(Local 280M)

Ppos shift

FSM1
(global)

Clk(Local 280M)

_1296918014.vsd
RAM (40 timesum)For)Neighbers

Generate level 0 trigger

Generate level 1 trigger

RAM(91 spacesum) for one TRU

L0

FSM1
(global)

RAM(40 timesum) for one TRU

FSM2
(spacesum for bound)

Find the max among 91 space sum

Boundry space sum and find the max

Find the max among 40TRU

_1281971171.vsd
Title
￼

NOR

0

1

clkin

clkin

sel

Local_CLK_DCM

DCS_CLK_DCM

Mul2_1

CLK

rst

DCS_CLk_P

DCS_CLk_N

Local CLK

