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Session 10: Reasoning about KGs (DL)
 Themes:

– description logic

– decision problems
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Readings

• Materials at http://wiki.uib.no/info216 (cursory):
– http://www.w3.org/TR/owl2-primer/

• show: Turtle and Manchester syntax
• hide: other syntaxes

– Description Logic Handbook:
• Chapter 1: Nardi & Brachman:

Introduction to Description Logics
• Chapter 2: Baader & Nutt:

Formal Description Logics (gets hard)
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Description Logic
(DL)



Relationship to other logics
• Proposition logics are about statements (propositions):

“Martha is a Woman”  ⇐
“Martha is Human”  “Martha is Female”⋀

• (First order) predicate logics are about predicates and objects:

– ∀x.(Woman(x)  Human(x)  Female(x))⇔ ⋀

• Description logics are about concepts:

– Woman  Human  Female≐ ⊓

– ...and also about roles and individuals

• There are many other logic systems:

– modal logics: necessarily □, possibly ◊

– temporal logics: always □, sometimes ◊, next time ○



(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Description logics
• Description Logic (DL)

– a simple fragment of predicate logic
• ...or, rather, a family of such fragments

– not very expressive (“uttrykkskraftig”)
– but (can have) good decision problems, i.e.,

• it answers many decision problems (rather) quickly

• Suitable for describing concepts (“begreper”)
– formal basis for OWL DL
– can be used to:

• describe concepts (“Tbox”) and their roles (“Rbox”)

• describe individuals and their relations (“ABox”)
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Definition of concepts (“begreper”)
• Woman  Human  Female≐ ⊓

• Man  Human  ¬ Woman≐ ⊓

• Parent  Mother  Father≐ ⊔

– concepts: Human, Female, Woman…

– definition: ≐

– conjunction (and): ⊓

– disjunction (or): ⊔

– negation (not): ¬

– nested expressions: (   )

• Childless ≐ ..using Human and Parent..
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Definition of concepts (“begreper”)
• Woman  Human  Female≐ ⊓

• Man  Human  ¬ Woman≐ ⊓

• Parent  Mother  Father≐ ⊔

– concepts: Human, Female, Woman...

– definition: ≐

– conjunction (and): ⊓

– disjunction (or): ⊔

– negation (not): ¬

– nested expressions: (   )

• Childless ≐ Human  ¬ Parent⊓
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Types of concepts (“begreper”)
• Woman  Human  Female≐ ⊓

• Man  Human  ¬ Woman≐ ⊓

• Parent  Mother  Father≐ ⊔

– atomic (or basic, primitive) concepts: 
Human, Female, Woman…

– only used on the r.h.s. of definitions

– concept expressions (complex concepts):
¬ Woman, Human  Female…⊓

– only used on the r.h.s. of definitions

– defined (and named) concepts: 
Woman, Man…

– defined on the l.h.s. (left-hand side) of definitions
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Atomic and defined concepts
• Atomic (or basic) concepts

– given, always named
– cannot appear on the l.h.s. of a ≐ definition
– correspond to simple OWL-NamedClasses

• Concept expressions
– expressed using other concepts (and roles)
– must appear on the r.h.s. (right-hand side) of a ≐ definition
– correspond to complex OWL-Classes

• Defined concepts can also be named

– must appear on the l.h.s. of a ≐ definition
– concept_name ≐ concept_expression

• ...similar distinction between atomic and defined roles
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Roles
• Mother  Female  hasChild.≐ ⊓ ∃ ⊤
• Bachelor  Male  ¬ hasSpouse.≐ ⊓ ∃ ⊤
• Uncle  Male  hasSibling.Parent≐ ⊓ ∃

– roles: hasChild, hasSibling...

– universal concept (“top”): ⊤
– existential restriction: ∃

• Grandparent ≐ ..using Human, hasChild, Parent..

• Grandparent ≐ ..using only Human, hasChild..

• Uncle ≐ ..using Male, hasSibling, hasChild..

An atomic
(or basic) role



(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Roles
• Mother  Female  hasChild.≐ ⊓ ∃ ⊤
• Bachelor  Male  ¬ hasSpouse.≐ ⊓ ∃ ⊤
• Uncle  Male  hasSibling.Parent≐ ⊓ ∃

– roles: hasChild, hasSibling...

– universal concept (“top”): ⊤
– existential restriction: ∃

• Grandparent ≐ Human  hasChild.Parent⊓ ∃

• Grandparent ≐ ..using only Human, hasChild..

• Uncle ≐ ..using Male, hasSibling, hasChild..
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Roles
• Mother  Female  hasChild.≐ ⊓ ∃ ⊤
• Bachelor  Male  ¬ hasSpouse.≐ ⊓ ∃ ⊤
• Uncle  Male  hasSibling.Parent≐ ⊓ ∃

– roles: hasChild, hasSibling...

– universal concept (“top”): ⊤
– existential restriction: ∃

• Grandparent ≐ Human  hasChild.Parent⊓ ∃

• Grandparent ≐ Human   hasChild.  hasChild.⊓ ∃ ∃ ⊤

• Uncle ≐ ....using Male, hasSibling, hasChild....
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Roles
• Mother  Female  hasChild.≐ ⊓ ∃ ⊤
• Bachelor  Male  ¬ hasSpouse.≐ ⊓ ∃ ⊤
• Uncle  Male  hasSibling.Parent≐ ⊓ ∃

– roles: hasChild, hasSibling...

– universal concept (“top”): ⊤
– existential restriction: ∃

• Grandparent ≐ Human  hasChild.Parent⊓ ∃

• Grandparent ≐ Human   hasChild.  hasChild.⊓ ∃ ∃ ⊤

• Uncle  Male   hasSibling.  hasChild.≐ ⊓ ∃ ∃ ⊤
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Null concept
• Male  Female  ⊥⊓ ⊑

– null concept (“bottom”): ⊥
– subsumption (sub concept): ⊑

• ⊑ is used for subsumption axioms
• or: containment / specialisation axioms

• ≐ is used for definitions (or just ≡)
• ≡ is also used for equivalence axioms

• Note the use of ...  ⊥⊑  (“subsumption of bottom”)
to say that something is not the case
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Null concept
• Male  Female  ⊓ ⊑ ⊥

– null concept (“bottom”): ⊥
– subsumption (sub concept): ⊑

• ⊑ is used for subsumption axioms
• or: containment / specialisation axioms

• ≐ is used for definitions (or just ≡)
• ≡ is also used for equivalence axioms

• Note the use of ...  ⊑ ⊥ (“subsumption of bottom”)
to say that something is not the case

• This was our first proper axiom!

• so far we have just defined concepts

• we have not used them in proper axioms
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Axioms
• ≐ is used for definitions
• ≡ is used for equivalence axioms

• and sometimes for definitions too...
• Axioms are equivalences or subsumptions:

– subsumption axioms (⊑): 
– composite concept (role) expressions on both sides

– equivalence axioms (≡): 
– composite concept (role) expressions on both sides
– corresponds to: C  D, D  C⊑ ⊑

• expression  ⊑ ⊥ (“subsumption of bottom”) is used
to say that something is not the case
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More role definitions
• HappyFather  Father   hasChild.HappyPerson≐ ⊓ ∀

– universal restriction: ∀
• MotherOfOne  Mother  =1 hasChild.≐ ⊓ ⊤

• Polygamist  ≥3 hasSpouse.≐ ⊤

– number restrictions: =, ≥, ≤

• Narsissist  hasLoveFor.≐ ∃ Self

– self references: Self

• MassMurderer ≐ ...using hasKilled, Human...
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More uses of roles
• HappyFather  Father   hasChild.HappyPerson≐ ⊓ ∀

– universal restriction: ∀
• MotherOfOne  Mother  =1 hasChild.≐ ⊓ ⊤

• Polygamist  ≥3 hasSpouse.≐ ⊤

– number restrictions: =, ≥, ≤

• Narsissist  hasLoveFor.≐ ∃ Self

– self references: Self

• MassMurderer  ≥4 hasKilled.Human≐
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Inverse and transitive roles
• Child  Human  hasChild≐ ⊓ ∃ -.⊤
• hasParent  hasChild≐ -

• BlueBlood  hasParent≐ ∀ *.BlueBlood

– inverse role: hasChild-

– transitive role: hasParent*

• Niece ≐ ..Woman, hasChild, hasSibling..
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Inverse and transitive roles
• Child  Human  hasChild≐ ⊓ ∃ -.⊤
• hasParent  hasChild≐ -

• BlueBlood  hasParent≐ ∀ *.BlueBlood

– inverse role: hasChild-

– transitive role: hasParent*

• Niece ≐ Woman  hasChild⊓ ∃ -.hasSibling.⊤
• We just started to define roles!

– until now, we have only defined concepts
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Composite roles
• Similar to composite concepts, e.g.:

– hasUncle  hasParent o hasBrother≐

– hasLovedChild  hasChild  hasLoveFor≐ ⊓

– hasBrother  (hasSibling | Male)≐

• Not always supported by OWL-DL and “reasoning engines”

– they can have “bad decision problems”
• i.e., they compute slowly or intractably

– ...with some exceptions

• hasDaughter ≐ ..using hasChild, Female..
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Composite roles
• Similar to composite concepts, e.g.:

– hasUncle  hasParent o hasBrother≐

– hasLovedChild  hasChild  hasLoveFor≐ ⊓

– hasBrother  (hasSibling | Male)≐

• Not always supported by OWL-DL and “reasoning engines”

– they can have “bad decision problems”
• i.e., they compute slowly or intractably

– ...with some exceptions

• hasDaughter  (hasChild | Female)≐



(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

TBox

• Terminology box (TBox):
– a collection of definitions
– definitions (≐): 

– concept_name ≐ concept_expression
– defined and named concept  on the l.h.s.
– complex concept expression on the r.h.s

– defined names 
– must appear on the l.h.s. of some ≐ definition

– atomic (basic, primitive) names 
– can only appear on the r.h.s. of ≐ definitions
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Acyclic, definitional TBox
• Source ≐  ∃ hasSource-.Content

• TrustedContent ≐  ∃ hasSource.TrustedSource

• VerifiedContent ≐  ∃ verifiedBy.FactChecker

• DebunkedContent ≐  debunked∃ By.FactChecker

• UnreliableSource ≐  ∃ hasSource-.DebunkedContent

• VerifyingSource ≐  ∃ hasSource-.VerifiedContent  
   ⊓ ∀ hasSource-.VerifiedContent
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Acyclic, definitional TBox
• Source ≐  ∃ hasSource-.Content

• TrustedContent ≐  ∃ hasSource.TrustedSource

• VerifiedContent ≐  ∃ verifiedBy.FactChecker

• DebunkedContent ≐  debunked∃ By.FactChecker

• UnreliableSource ≐  ∃ hasSource-.DebunkedContent

• VerifyingSource ≐  ∃ hasSource-.VerifiedContent  
   ⊓ ∀ hasSource-.VerifiedContent

Acyclic and 
unequivocal!

Concept expressions
of atomic concepts

Defined concepts
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TBox

• Acyclicity: no cyclic definitions in the TBox

• Unequivocality: each named defined term is 
only used on the l.h.s. of a single definition

• Concept expansion:
• every concept can be written as an expression of 

only atomic concepts
• algorithm:

• start with the expression that defines the concept
• recursively replace all the defined concepts used 

in the expression with their definitions
• halt when only atomic concepts remain



Expanded definitional TBox
• Source ≐  ∃ hasSource-.Content

• TrustedContent ≐  ∃ hasSource.TrustedSource

• VerifiedContent ≐  ∃ verifiedBy.FactChecker

• DebunkedContent ≐  debunked∃ By.FactChecker

• UnreliableSource ≐  ∃ hasSource-.
 debunked∃ By.FactChecker

• VerifyingSource ≐  ∃ hasSource-.
 ∃ verifiedBy.FactChecker

 ⊓ ∀ hasSource-.
 ∃ verifiedBy.FactChecker

Only basic concepts on 
the right hand sides!
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RBox

• Role box (RBox):
– a collection of definitions of roles
– otherwise similar to TBoxes:

– atomic (basic, primitive) roles
– role expressions
– named defined roles
– role expansion

– not always necessary (i.e., only atomic roles)
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ABox
• So far definitions of concepts and roles (TBox, RBox)

• Also two types of axioms about individuals (ABox):
– class assertion (using a concept):
Märtha : Female  Royal⊓

– role assertion (using a role):
<Märtha, EmmaTallulah> : hasChild
<Märtha, HaakonMagnus> : hasBrother

• A TBox + an ABox (+ possibly an RBox) constitute a knowledge base (K ):
• concepts, roles in the TBox (aka “the tags”)
• roles in the RBox (also “tags”)
• individuals, roles in the ABox (“the tagged data”)
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Syntaxes differ a bit...
• So far definitions of concepts and roles (TBox, RBox)

• Also two types of axioms about individuals (ABox):
– class assertion (using a concept):
Female(Märtha),(Female  Royal)(Märtha)⊓

– role assertion (using a role):
hasChild(Märtha, EmmaTallulah)
hasBrother(Märtha, HaakonMagnus)

• A TBox + an ABox (+ possibly an RBox) constitute a knowledge base (K ):
• concepts, roles in the TBox (aka “the tags”)
• roles in the RBox (also “tags”)
• individuals, roles in the ABox (“the tagged data”)
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Summary of axioms
• Terminology axioms (TBox):

– subsumptions:  C ⊑ D
– equivalences: C ≡ D

corresponds to: C ⊑ D, D ⊑ C
• Role axioms (RBox)

• Individual assertion axioms (in the ABox):

– class assertions:  a:C
– role assertions:  <a,b>:R

• Knowledge base K = (  T, A  )   or  K = (  T, R, A  )  

– TBox: T RBox: R ABox: A

C and D are expressions!

a and b are individuals.
R is a role!
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Decision
Problems
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Reasoning over knowledge bases
• What more can we do with ontologies?

• For example:
– given a source ontology that describes media content along with its 

sources and trusrtworthiness
– we can answer questions like, e.g.:

– is trusted content a type of content?
– can content be both verified and debunked?
– is all verified content trusted?

– competency questions are what we want an ontology to answer
– DL offers a clear and compact way or representing 

and reasoning about questions such as these!
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Decision problems
• A computational problem with a yes/no answer, e.g.

– is C subsumed by D: K  C  D⊨ ⊑  ?

– are C and D consistent: K  a:(⊨ C ⊓ D)?

– does a belong to C: K  a:C⊨  ?

– is a R-related to b: K  <a,b>:R⊨  ?

• Given a knowledge base K  , reasoning 
engines are designed to give yes / no answer

• ...but not all decision problems are decidable
• ...or have tractable complexity
• depends on the expressions used!

C and D are
 classes,

a and b are 
individuals.
R is a role!
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Decision problems for concepts
• Four important decision problems for concepts:

– consistency: 
can there be an individual a so that 
T  a:C⊨

– subsumption: 
T  C  D⊨ ⊑

– equivalence:
T  C ≡ D⊨ , also written C ≡T D,

– disjunction:
T  C  D  ⊨ ⊓ ⊑ ⊥

• T can always be emptied, by expanding all its concepts



(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Decision problems for concepts
• All four can be reduced to subsumption or consistency!

– consistency: 
T  a:C⊨ ↔ T  C  ⊭ ⊑ ⊥
T ⊭ a:C ↔ T ⊨ C   ⊑ ⊥

– subsumption: 

T  C  D⊨ ⊑ ↔ T  (C⊨  ⊓ ¬ D)  ⊥⊑
– equivalence:

T  C ≡ D⊨ ↔ T  C  D, D  C ⊨ ⊑ ⊑

– disjunction:
T  C  D  ⊨ ⊓ ⊑ ⊥

• T can always be emptied, by expanding all its concepts
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Decision problems for individuals
• Decision problems for individuals and roles:

– instance checking:

– is individual a member of class/concept C?

– A  a:C⊨  ⊭ A    ¬(a:C)⊓

– role checking:

– is individual a R-related to individual b?

– A  <a,b>:R⊨  ⊭ A    ¬(<a,b>:R⊓ )

– classifications (not yes/no):

– to which classes/concepts does a belong?

– all individuals of class/concept C?

• Everything boils down to consistency checking for ABoxes

• ...under certain (rather weak) conditions
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Decision problems in practice
• Description logic is implemented by reasoning engines/OWL reasoner

– e.g., HermiT and Pellet
– distinct from inference engines, such as OWL-RL

• Protegé-OWL 
– comes with HermiT, more plugins can be installed

• Owlready2 (an OWL programming API built around)
– comes with HermiT and Pellet, HermiT is default

• Solves decision problems, e.g., 
– classifiy individuals
– find subclass relationships (subsumptions)
– find unsatisfiable classes (concepts)
– detect inconsistencies
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Tableau algorithm
• A simple reasoning procedure

• Tests satisfiability of a concept C
0

• C
0
 is possibly expanded

• negation normal form (NNF)

• Starts with ABox  A
0
 = { C

0
(x) }

• Applies transformation rules that 
preserve consistency

• Halts a branch
• when no more rules can be 

applied
• when the branch contains a 

contradiction

• If all possible branches contain 
contradictions:

• C
0
 is unsatisfiable

• Or else:

• C
0
 is satisfiable
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Next week:
Formal ontologies

(OWL-DL)
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