
Welcome to INFO216:
Knowledge Graphs

Spring 2022

Andreas L Opdahl
<Andreas.Opdahl@uib.no>

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Session 10: Reasoning about KGs (DL)
 Themes:

– description logic

– decision problems

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Readings

• Materials at http://wiki.uib.no/info216 (cursory):
– http://www.w3.org/TR/owl2-primer/

• show: Turtle and Manchester syntax
• hide: other syntaxes

– Description Logic Handbook:
• Chapter 1: Nardi & Brachman:

Introduction to Description Logics
• Chapter 2: Baader & Nutt:

Formal Description Logics (gets hard)

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Description Logic
(DL)

Relationship to other logics
• Proposition logics are about statements (propositions):

“Martha is a Woman” ⇐
“Martha is Human” “Martha is Female”⋀

• (First order) predicate logics are about predicates and objects:

– ∀x.(Woman(x) Human(x) Female(x))⇔ ⋀

• Description logics are about concepts:

– Woman Human Female≐ ⊓

– ...and also about roles and individuals

• There are many other logic systems:

– modal logics: necessarily □, possibly ◊

– temporal logics: always □, sometimes ◊, next time ○

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Description logics
• Description Logic (DL)

– a simple fragment of predicate logic
• ...or, rather, a family of such fragments

– not very expressive (“uttrykkskraftig”)
– but (can have) good decision problems, i.e.,

• it answers many decision problems (rather) quickly

• Suitable for describing concepts (“begreper”)
– formal basis for OWL DL
– can be used to:

• describe concepts (“Tbox”) and their roles (“Rbox”)

• describe individuals and their relations (“ABox”)

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Definition of concepts (“begreper”)
• Woman Human Female≐ ⊓

• Man Human ¬ Woman≐ ⊓

• Parent Mother Father≐ ⊔

– concepts: Human, Female, Woman…

– definition: ≐

– conjunction (and): ⊓

– disjunction (or): ⊔

– negation (not): ¬

– nested expressions: ()

• Childless ≐ ..using Human and Parent..

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Definition of concepts (“begreper”)
• Woman Human Female≐ ⊓

• Man Human ¬ Woman≐ ⊓

• Parent Mother Father≐ ⊔

– concepts: Human, Female, Woman...

– definition: ≐

– conjunction (and): ⊓

– disjunction (or): ⊔

– negation (not): ¬

– nested expressions: ()

• Childless ≐ Human ¬ Parent⊓

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Types of concepts (“begreper”)
• Woman Human Female≐ ⊓

• Man Human ¬ Woman≐ ⊓

• Parent Mother Father≐ ⊔

– atomic (or basic, primitive) concepts:
Human, Female, Woman…

– only used on the r.h.s. of definitions

– concept expressions (complex concepts):
¬ Woman, Human Female…⊓

– only used on the r.h.s. of definitions

– defined (and named) concepts:
Woman, Man…

– defined on the l.h.s. (left-hand side) of definitions

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Atomic and defined concepts
• Atomic (or basic) concepts

– given, always named
– cannot appear on the l.h.s. of a ≐ definition
– correspond to simple OWL-NamedClasses

• Concept expressions
– expressed using other concepts (and roles)
– must appear on the r.h.s. (right-hand side) of a ≐ definition
– correspond to complex OWL-Classes

• Defined concepts can also be named

– must appear on the l.h.s. of a ≐ definition
– concept_name ≐ concept_expression

• ...similar distinction between atomic and defined roles

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Roles
• Mother Female hasChild.≐ ⊓ ∃ ⊤
• Bachelor Male ¬ hasSpouse.≐ ⊓ ∃ ⊤
• Uncle Male hasSibling.Parent≐ ⊓ ∃

– roles: hasChild, hasSibling...

– universal concept (“top”): ⊤
– existential restriction: ∃

• Grandparent ≐ ..using Human, hasChild, Parent..

• Grandparent ≐ ..using only Human, hasChild..

• Uncle ≐ ..using Male, hasSibling, hasChild..

An atomic
(or basic) role

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Roles
• Mother Female hasChild.≐ ⊓ ∃ ⊤
• Bachelor Male ¬ hasSpouse.≐ ⊓ ∃ ⊤
• Uncle Male hasSibling.Parent≐ ⊓ ∃

– roles: hasChild, hasSibling...

– universal concept (“top”): ⊤
– existential restriction: ∃

• Grandparent ≐ Human hasChild.Parent⊓ ∃

• Grandparent ≐ ..using only Human, hasChild..

• Uncle ≐ ..using Male, hasSibling, hasChild..

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Roles
• Mother Female hasChild.≐ ⊓ ∃ ⊤
• Bachelor Male ¬ hasSpouse.≐ ⊓ ∃ ⊤
• Uncle Male hasSibling.Parent≐ ⊓ ∃

– roles: hasChild, hasSibling...

– universal concept (“top”): ⊤
– existential restriction: ∃

• Grandparent ≐ Human hasChild.Parent⊓ ∃

• Grandparent ≐ Human hasChild. hasChild.⊓ ∃ ∃ ⊤

• Uncle ≐using Male, hasSibling, hasChild....

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Roles
• Mother Female hasChild.≐ ⊓ ∃ ⊤
• Bachelor Male ¬ hasSpouse.≐ ⊓ ∃ ⊤
• Uncle Male hasSibling.Parent≐ ⊓ ∃

– roles: hasChild, hasSibling...

– universal concept (“top”): ⊤
– existential restriction: ∃

• Grandparent ≐ Human hasChild.Parent⊓ ∃

• Grandparent ≐ Human hasChild. hasChild.⊓ ∃ ∃ ⊤

• Uncle Male hasSibling. hasChild.≐ ⊓ ∃ ∃ ⊤

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Null concept
• Male Female ⊥⊓ ⊑

– null concept (“bottom”): ⊥
– subsumption (sub concept): ⊑

• ⊑ is used for subsumption axioms
• or: containment / specialisation axioms

• ≐ is used for definitions (or just ≡)
• ≡ is also used for equivalence axioms

• Note the use of ... ⊥⊑ (“subsumption of bottom”)
to say that something is not the case

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Null concept
• Male Female ⊓ ⊑ ⊥

– null concept (“bottom”): ⊥
– subsumption (sub concept): ⊑

• ⊑ is used for subsumption axioms
• or: containment / specialisation axioms

• ≐ is used for definitions (or just ≡)
• ≡ is also used for equivalence axioms

• Note the use of ... ⊑ ⊥ (“subsumption of bottom”)
to say that something is not the case

• This was our first proper axiom!

• so far we have just defined concepts

• we have not used them in proper axioms

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Axioms
• ≐ is used for definitions
• ≡ is used for equivalence axioms

• and sometimes for definitions too...
• Axioms are equivalences or subsumptions:

– subsumption axioms (⊑):
– composite concept (role) expressions on both sides

– equivalence axioms (≡):
– composite concept (role) expressions on both sides
– corresponds to: C D, D C⊑ ⊑

• expression ⊑ ⊥ (“subsumption of bottom”) is used
to say that something is not the case

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

More role definitions
• HappyFather Father hasChild.HappyPerson≐ ⊓ ∀

– universal restriction: ∀
• MotherOfOne Mother =1 hasChild.≐ ⊓ ⊤

• Polygamist ≥3 hasSpouse.≐ ⊤

– number restrictions: =, ≥, ≤

• Narsissist hasLoveFor.≐ ∃ Self

– self references: Self

• MassMurderer ≐ ...using hasKilled, Human...

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

More uses of roles
• HappyFather Father hasChild.HappyPerson≐ ⊓ ∀

– universal restriction: ∀
• MotherOfOne Mother =1 hasChild.≐ ⊓ ⊤

• Polygamist ≥3 hasSpouse.≐ ⊤

– number restrictions: =, ≥, ≤

• Narsissist hasLoveFor.≐ ∃ Self

– self references: Self

• MassMurderer ≥4 hasKilled.Human≐

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Inverse and transitive roles
• Child Human hasChild≐ ⊓ ∃ -.⊤
• hasParent hasChild≐ -

• BlueBlood hasParent≐ ∀ *.BlueBlood

– inverse role: hasChild-

– transitive role: hasParent*

• Niece ≐ ..Woman, hasChild, hasSibling..

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Inverse and transitive roles
• Child Human hasChild≐ ⊓ ∃ -.⊤
• hasParent hasChild≐ -

• BlueBlood hasParent≐ ∀ *.BlueBlood

– inverse role: hasChild-

– transitive role: hasParent*

• Niece ≐ Woman hasChild⊓ ∃ -.hasSibling.⊤
• We just started to define roles!

– until now, we have only defined concepts

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Composite roles
• Similar to composite concepts, e.g.:

– hasUncle hasParent o hasBrother≐

– hasLovedChild hasChild hasLoveFor≐ ⊓

– hasBrother (hasSibling | Male)≐

• Not always supported by OWL-DL and “reasoning engines”

– they can have “bad decision problems”
• i.e., they compute slowly or intractably

– ...with some exceptions

• hasDaughter ≐ ..using hasChild, Female..

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Composite roles
• Similar to composite concepts, e.g.:

– hasUncle hasParent o hasBrother≐

– hasLovedChild hasChild hasLoveFor≐ ⊓

– hasBrother (hasSibling | Male)≐

• Not always supported by OWL-DL and “reasoning engines”

– they can have “bad decision problems”
• i.e., they compute slowly or intractably

– ...with some exceptions

• hasDaughter (hasChild | Female)≐

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

TBox

• Terminology box (TBox):
– a collection of definitions
– definitions (≐):

– concept_name ≐ concept_expression
– defined and named concept on the l.h.s.
– complex concept expression on the r.h.s

– defined names
– must appear on the l.h.s. of some ≐ definition

– atomic (basic, primitive) names
– can only appear on the r.h.s. of ≐ definitions

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Acyclic, definitional TBox
• Source ≐ ∃ hasSource-.Content

• TrustedContent ≐ ∃ hasSource.TrustedSource

• VerifiedContent ≐ ∃ verifiedBy.FactChecker

• DebunkedContent ≐ debunked∃ By.FactChecker

• UnreliableSource ≐ ∃ hasSource-.DebunkedContent

• VerifyingSource ≐ ∃ hasSource-.VerifiedContent
 ⊓ ∀ hasSource-.VerifiedContent

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Acyclic, definitional TBox
• Source ≐ ∃ hasSource-.Content

• TrustedContent ≐ ∃ hasSource.TrustedSource

• VerifiedContent ≐ ∃ verifiedBy.FactChecker

• DebunkedContent ≐ debunked∃ By.FactChecker

• UnreliableSource ≐ ∃ hasSource-.DebunkedContent

• VerifyingSource ≐ ∃ hasSource-.VerifiedContent
 ⊓ ∀ hasSource-.VerifiedContent

Acyclic and
unequivocal!

Concept expressions
of atomic concepts

Defined concepts

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

TBox

• Acyclicity: no cyclic definitions in the TBox

• Unequivocality: each named defined term is
only used on the l.h.s. of a single definition

• Concept expansion:
• every concept can be written as an expression of

only atomic concepts
• algorithm:

• start with the expression that defines the concept
• recursively replace all the defined concepts used

in the expression with their definitions
• halt when only atomic concepts remain

Expanded definitional TBox
• Source ≐ ∃ hasSource-.Content

• TrustedContent ≐ ∃ hasSource.TrustedSource

• VerifiedContent ≐ ∃ verifiedBy.FactChecker

• DebunkedContent ≐ debunked∃ By.FactChecker

• UnreliableSource ≐ ∃ hasSource-.
 debunked∃ By.FactChecker

• VerifyingSource ≐ ∃ hasSource-.
 ∃ verifiedBy.FactChecker

 ⊓ ∀ hasSource-.
 ∃ verifiedBy.FactChecker

Only basic concepts on
the right hand sides!

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

RBox

• Role box (RBox):
– a collection of definitions of roles
– otherwise similar to TBoxes:

– atomic (basic, primitive) roles
– role expressions
– named defined roles
– role expansion

– not always necessary (i.e., only atomic roles)

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

ABox
• So far definitions of concepts and roles (TBox, RBox)

• Also two types of axioms about individuals (ABox):
– class assertion (using a concept):
Märtha : Female Royal⊓

– role assertion (using a role):
<Märtha, EmmaTallulah> : hasChild
<Märtha, HaakonMagnus> : hasBrother

• A TBox + an ABox (+ possibly an RBox) constitute a knowledge base (K):
• concepts, roles in the TBox (aka “the tags”)
• roles in the RBox (also “tags”)
• individuals, roles in the ABox (“the tagged data”)

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Syntaxes differ a bit...
• So far definitions of concepts and roles (TBox, RBox)

• Also two types of axioms about individuals (ABox):
– class assertion (using a concept):
Female(Märtha),(Female Royal)(Märtha)⊓

– role assertion (using a role):
hasChild(Märtha, EmmaTallulah)
hasBrother(Märtha, HaakonMagnus)

• A TBox + an ABox (+ possibly an RBox) constitute a knowledge base (K):
• concepts, roles in the TBox (aka “the tags”)
• roles in the RBox (also “tags”)
• individuals, roles in the ABox (“the tagged data”)

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Summary of axioms
• Terminology axioms (TBox):

– subsumptions: C ⊑ D
– equivalences: C ≡ D

corresponds to: C ⊑ D, D ⊑ C
• Role axioms (RBox)

• Individual assertion axioms (in the ABox):

– class assertions: a:C
– role assertions: <a,b>:R

• Knowledge base K = (T, A) or K = (T, R, A)

– TBox: T RBox: R ABox: A

C and D are expressions!

a and b are individuals.
R is a role!

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Decision
Problems

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Reasoning over knowledge bases
• What more can we do with ontologies?

• For example:
– given a source ontology that describes media content along with its

sources and trusrtworthiness
– we can answer questions like, e.g.:

– is trusted content a type of content?
– can content be both verified and debunked?
– is all verified content trusted?

– competency questions are what we want an ontology to answer
– DL offers a clear and compact way or representing

and reasoning about questions such as these!

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Decision problems
• A computational problem with a yes/no answer, e.g.

– is C subsumed by D: K C D⊨ ⊑ ?

– are C and D consistent: K a:(⊨ C ⊓ D)?

– does a belong to C: K a:C⊨ ?

– is a R-related to b: K <a,b>:R⊨ ?

• Given a knowledge base K , reasoning
engines are designed to give yes / no answer

• ...but not all decision problems are decidable
• ...or have tractable complexity
• depends on the expressions used!

C and D are
 classes,

a and b are
individuals.
R is a role!

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Decision problems for concepts
• Four important decision problems for concepts:

– consistency:
can there be an individual a so that
T a:C⊨

– subsumption:
T C D⊨ ⊑

– equivalence:
T C ≡ D⊨ , also written C ≡T D,

– disjunction:
T C D ⊨ ⊓ ⊑ ⊥

• T can always be emptied, by expanding all its concepts

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Decision problems for concepts
• All four can be reduced to subsumption or consistency!

– consistency:
T a:C⊨ ↔ T C ⊭ ⊑ ⊥
T ⊭ a:C ↔ T ⊨ C ⊑ ⊥

– subsumption:

T C D⊨ ⊑ ↔ T (C⊨ ⊓ ¬ D) ⊥⊑
– equivalence:

T C ≡ D⊨ ↔ T C D, D C ⊨ ⊑ ⊑

– disjunction:
T C D ⊨ ⊓ ⊑ ⊥

• T can always be emptied, by expanding all its concepts

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Decision problems for individuals
• Decision problems for individuals and roles:

– instance checking:

– is individual a member of class/concept C?

– A a:C⊨ ⊭ A ¬(a:C)⊓

– role checking:

– is individual a R-related to individual b?

– A <a,b>:R⊨ ⊭ A ¬(<a,b>:R⊓)

– classifications (not yes/no):

– to which classes/concepts does a belong?

– all individuals of class/concept C?

• Everything boils down to consistency checking for ABoxes

• ...under certain (rather weak) conditions

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Decision problems in practice
• Description logic is implemented by reasoning engines/OWL reasoner

– e.g., HermiT and Pellet
– distinct from inference engines, such as OWL-RL

• Protegé-OWL
– comes with HermiT, more plugins can be installed

• Owlready2 (an OWL programming API built around)
– comes with HermiT and Pellet, HermiT is default

• Solves decision problems, e.g.,
– classifiy individuals
– find subclass relationships (subsumptions)
– find unsatisfiable classes (concepts)
– detect inconsistencies

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Tableau algorithm
• A simple reasoning procedure

• Tests satisfiability of a concept C
0

• C
0
 is possibly expanded

• negation normal form (NNF)

• Starts with ABox A
0
 = { C

0
(x) }

• Applies transformation rules that
preserve consistency

• Halts a branch
• when no more rules can be

applied
• when the branch contains a

contradiction

• If all possible branches contain
contradictions:

• C
0
 is unsatisfiable

• Or else:

• C
0
 is satisfiable

(c) Andreas L Opdahl, 2022 INFO216: Knowledge Graphs

Next week:
Formal ontologies

(OWL-DL)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

