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The Internet of Things (IoT) has recently received considerable interest from both academia and industry that are working on technologies 

to develop the future Internet. It is a joint and complex discipline that requires synergetic efforts from several communities such as 

telecommunication industry, device manufacturers, semantic Web, informatics and engineering, among many others. Much of the IoT 

initiative is supported by the capabilities of manufacturing low-cost and energy-efficient hardware for devices with communication 
capacities (e.g., sensors and RFID tags), the maturity of wireless sensor network technologies, and the interests in integrating the physical 

and cyber worlds.  IoT consists of interconnected “Things” and their virtual representations addressable by using standard communication 

protocols. However, the heterogeneity of the “Things” makes interoperability among them a challenging problem, which prevents generic 

solutions from being adopted on a global scale. Furthermore, the volume, velocity and volatility of the IoT data impose significant 

challenges to existing information systems. The semantic Web community has worked on combining knowledge engineering and AI 

techniques to represent, integrate, and reason upon data and knowledge in the past decades. Semantic technologies based on machine-

interpretable representation formalism have shown promise for describing objects, sharing and integrating information, and infering new 

knowledge together with other intelligent processing techniques. The addition of semantics has also helped create machine-interpretable 

and self-descriptive data in the IoT domain. However, the dynamic and resource-constrained nature of the IoT requires special design 

considerations to be taken into account to effectively apply the semantic technologies on the real world data. In this article we review some 

of the recent developments on applying the semantic technologies to IoT – in particular, information modeling, ontology design, and 

processing of semantic data – and discuss the challenges.  

 

1. INTRODUCTION 

Extending the current Internet with interconnected physical objects and devices (or referred to as 

“Things”) and their virtual representation has been a growing trend in recent years. This will 

create a range of potentially new products and services in many different domains, such as smart 

homes, e-health, automotive, transport and logistics, and environmental monitoring (Kranenburg 

et al., 2011). The research in this area has recently gained momentum and is supported by the 

collaborative efforts from academia, industry, and standardization bodies in several communities 

such as telecommunication, semantic Web, and informatics. For example, we have seen that new 

protocols and standards for low-level device communications in resource-constrained 

environments have been developed (Bormann, Castellani & Shelby 2012). While for many years 

legacy systems have been primarily designed for specific purposes with limited flexibility, the 

current initiative on building the IoT (or more general, the future Internet) demands application 

and service platforms which can capture, communicate, store, access and share data from the 

physical world. This will create new opportunities in a long list of domains such as e-health, retail, 

green energy, manufacturing, smart cities/houses and also personalized end-user applications. 

 

A primary goal of interconnecting devices (e.g., sensors) and collecting/processing data from 

them is to create situation awareness and enable applications, machines, and human users to better 

understand their surrounding environments. The understanding of a situation, or context, 

potentially enables services and applications to make intelligent decisions and to respond to the 

dynamics of their environments. Data collected by different sensors and devices is usually multi-

modal (temperature, light, sound, video, etc.) and diverse in nature (quality of data can vary with 
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different devices through time and it is mostly location and time dependent). The diversity, 

volatility, and ubiquity make the task of processing, integrating, and interpreting the real world 

data a challenging task. The volume of data on the Internet and the Web has already been 

overwhelming and is still growing at stunning pace: everyday around 2.5 quintillion bytes of data 

is created and it is estimated that 90% of the data today was generated in the past two years (IBM, 

2012). Sensory data (including the citizen sensors (Sheth, 2009a)) related to different events and 

occurrences  can be analyzed and turned into actionable knowledge to give us better 

understanding about our physical world and to create more value-added products and services, for 

example, readings from  meters can be used to better predict and balance power consumption in 

smart grids; analyzing combination of traffic, pollution, weather and congestion sensory data 

records can provide better traffic and city management; monitoring and processing sensory 

devices attached to patients or elderly can provide better remote healthcare. This data 

transformation process can be better illustrated using the well known “knowledge hierarchy” 

(Rowley, 2007). We adapt the meanings of the layers to the context of IoT and semantics (see 

Figure 1).  

 

 
Figure 1. “Knowledge Hierarchy” in the context of IoT   

 

The lower layer refers to large amount of data produced by the IoT resources and devices. The 

layer above helps create structured and machine-readable information from the raw data of 

various forms to enhance interoperability. However, what is required by humans and high-level 

applications and services often is not the information, but high-level abstractions and perceptions 

that provide human and machine-understandable meanings and insights of the underlying data. 

The high-level abstractions and perceptions then can be transformed to actionable intelligence 

(wisdom) with domain and background knowledge to exploit the full potential of IoT and create 

end-to-end solutions.  

 

The “big data” solutions and cloud platforms can provide infrastructure and tools for handling, 

processing and analyzing deluge of the IoT data. However, we still need efficient methods and 

solutions that can structure, annotate, share and make sense of the IoT data and facilitate 

transforming it to actionable knowledge and intelligence in different application domains. Since 

many of the devices and resources in IoT are highly distributed, heterogeneous, and resource-

constrained (e.g. battery powered devices, nodes with limited processing and memory 



capabilities), the requirements for designing services and applications in IoT are different from 

those currently used on the Internet and the Web (specifically in terms of interoperability, 

scalability, reliability, autonomy, security and privacy). This is reflected in the recent architecture 

design and development efforts for the Future Internet and Web (Zorzi et al., 2010).  

 

Issues related to interoperability, automation, and data analytics naturally lead to a semantic-

oriented perspective towards IoT (Atzori, Iera & Morabito, 2010). Applying semantic 

technologies to IoT promotes interoperability among IoT resources, information models, data 

providers and consumers (Selvage et al., 2006), and facilitates effective data access and 

integration, resource discovery, semantic reasoning, and knowledge extraction. In this article, we 

provide an overview of the recent developments in applying semantic technologies in various 

aspects of the IoT. We emphasize that the use of semantic technologies should take the 

dynamicity and constraints of the IoT domain into consideration. We extend the discussion on the 

semantic Sensor Web (Sheth et al., 2008) and quality of sensor data on sensor Web (e.g. Corcho 

& Castro, 2010) to IoT and provide an analysis of the major research issues. We describe some of 

the initial progress and developments that have been made in the past few years in using the 

semantic technologies in IoT and discuss the future prospects and challenges of developing 

efficient semantic-enabled IoT systems. The rest of the paper is organized as follows. Section 2 

discusses why semantics play such a significant role in the current development of IoT. Section 3 

describes the experiences gained from the existing works that apply semantic technologies to IoT. 

Section 4 reviews the recent developments in this field; in particular, discusses resource and 

information modeling, linked sensor data, sensor data abstraction and perception, and the 

supporting tools for IoT data query and processing. In Section 5, we look at the potential research 

areas where semantic technologies can be further exploited and discuss the associated challenges. 

Section 6 concludes the paper.  

 

2. WHY SEMANTICS ARE IMPORTANT? 

It is estimated that there will be around 25 billion devices connected to the Internet by 2015 and 

50 billion by 2020 (Evans, 2011). Such a stunning number of highly distributed and 

heterogeneous devices will need to be interconnected and communicate in different scenarios 

autonomously. This implies that providing interoperability among the “Things” on the IoT is one 

of the most fundamental requirements to support object addressing, tracking, and discovery as 

well as information representation, storage, and exchange. The suite of technologies developed in 

the Semantic Web (Berners-Lee, Hendler & Lassila, 2001), such as ontologies, semantic 

annotation, Linked Data (Berners-Lee, 2006) and semantic Web services (McIlraith, Son & Zeng, 

2001), can be uses as principal solutions for the purpose of realizing the IoT. In what follows, we 

review different scenarios that demonstrate the importance of semantics to the research and 

development of IoT. 

 

2.1 Semantics for interoperability 

Semantic interoperability means that different stakeholders can access and interpret the data 

unambiguously.  “Things” on the IoT need to exchange data among each other and with other 

users on the Internet. Providing unambiguous data descriptions in a way that can be processed and 

interpreted by machines and software agents is a key enabler of automated information 

communications and interactions in IoT. Semantic annotation of the data (for example, with 



domain knowledge) can provide machine-interpretable descriptions on what the data represents, 

where it originates from, how it can be related to its surroundings, who is providing it, and what 

are the quality, technical, and non-technical attributes.  

 

2.2 IoT data integration 

IoT data usually originates from a device or a human, and refers to attributes of a phenomenon or 

an entity in the physical world. The data can be combined with other data to create different 

abstractions of the environment, or it can be integrated to the data processing chain in an existing 

application to support context and situation awareness. In all these cases, it is important that 

heterogeneous data can be seamlessly integrated or one type of data can be combined with other 

cyber, social, or physical world data (Sheth, 2011). Semantic descriptions can support this 

integration by enabling interoperability between different sources; however, analysis and mapping 

between different semantic description models is still required to facilitate the IoT data integration 

with other existing domain knowledge.   

 

2.3 IoT data abstraction and access 

Data abstraction in IoT is concerned with the ways that the physical world data is represented and 

managed. The current research has mainly focused on representing the observation and 

measurement data from sensor networks according to the OGC2 (the Open Geographical 

Consortium) model. More recently, ontologies such as the W3C’s SSN ontology (Lefort et al., 

2011; Compton et al., 2012) have been developed, which provide a number of constructs to 

formally describe not only the sensor resources but also the sensor observation and measurement 

data. With the semantic descriptions, the sensor data, or more generally, IoT data, can also be 

characterized on different abstraction levels. This is accomplished with semantic reasoning 

offered by semantic query languages (e.g., derived data on accuracy or average (Corcho & Castro, 

2010).  

 

Data access in IoT can be implemented at low-levels (e.g., device or network levels) by the use of 

low-level programming languages and operating systems (Corcho & Castro, 2010). Obviously, 

heterogeneity of the devices and (sensor) networks makes data access across the networks a 

difficult task. Service oriented principles, which allow complex software systems to be 

decomposed into smaller sub-systems or services have been used to integrate the IoT data with 

enterprise services (Spiess et al, 2009). The idea of “sensing as a service” represents a scalable 

way to access the sensor data through standard service technologies and has received consensus 

from the community. For example, a recent work by De et al. (De et al, 2011) proposes a semantic 

description model for services exposed by the IoT resources.  

 

2.4 Resource/service search and discovery 

In IoT, a resource is referred to as a device or entity that can provide data or perform actuation 

(e.g., a sensor or an actuator), and a service is a software entity that exposes the functionality of its 

corresponding resource (De et al, 2011). The search and discovery mechanisms allow locating 

resources or services that provide data related to an entity of interest in the physical world. Search 

and discovery are among the most important functionalities that are required in IoT. Semantic 
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annotation of the IoT resources and services, and processing and analyzing the semantically 

annotated data are essential elements to support the search and discovery methods for resources, 

services, and real physical world entities with different attributes and functionalities. With the 

dynamicity of IoT and the resource-constrained nature of the many IoT resources, energy 

efficiency considerations for discovery (e.g., sending requests to the resource itself only when it is 

needed) or compensation mechanisms (e.g. when a resources becomes unavailable because of 

running out of power or network loss) are often needed. An interesting work in this regard 

involves the selection and ranking of service instances according to contextual information 

(Guinard et al, 2010). The idea of the linked sensor data (see Section 4.3 for details) that enables 

publishing and use of sensor data using the linked data principles (Berners-Lee, 2006) can also be 

applied to support discovery and search of resources and services. In this case, resources are 

linked to each other as well as to other types of virtual and/or real world objects through the 

semantic links. 

 

2.5 Semantic reasoning and interpretation 

The knowledge representation formalism used in the suite of semantic Web technologies allows 

logical reasoning that is able to infer new information or knowledge from existing assertions and 

rules. Semantic reasoning is an important instrument in the domain of IoT for various purposes 

such as resource discovery, data abstraction, and knowledge extraction. The actual inference 

algorithms are usually implemented within available reasoners (e.g., FACT++
3
 and Jena

4
) so IoT 

developers do not need to be concerned with the complexities of the reasoning process itself. The 

SPARQL query language can be also used to construct queries to explore the semantic 

descriptions. Some examples using the SPARQL language to discover IoT resource in the linked 

data are presented in (De, S., et al., 2012; Pschorr et al., 2010).  

 

3. SEMANTICS ALONE ARE NOT ENOUGH 

It is important to note that providing semantic descriptions alone does not provide semantic 

interoperability and will not solve all the issues regarding discovery, management of data, and 

supporting autonomous interactions. The semantic description still needs to be shared, processed, 

and interpreted by various methods and services across different domains. The following 

highlights some of the practical issues that need to be considered in applying semantic 

technologies to the IoT domain.  

 

3.1 Ontologies do not make data interoperable at a global scale   

Defining an ontology and using semantic descriptions for data will make it interoperable for users 

and stakeholders that share and use the same ontology. In the IoT domain different stakeholders 

need to have a common agreement on ontological definitions. Most of the current ontologies and 

semantic description frameworks in the IoT domain are defined in the context of different projects 

and applications or they are currently at an early stage. To achieve global scale semantic 

interoperability, common semantic annotation frameworks, ontology definitions, and adaptation 

are key issues. Recent efforts, such as the W3C SSN ontology, are effective steps towards 

achieving this goal. For the current and existing applications, it is also important that their 
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ontologies and knowledge base can be accessed and reused by large groups of potential 

consumers. Developing and sharing ontologies and contributing towards description and 

annotation frameworks that can support legacy applications are effective steps in achieving 

semantic interoperability on a large scale. Other solutions, such as ontology mapping and 

matching (i.e. manual, semi-automated, or automated) can help link the resources described using 

different semantic annotation models. The ontology designers can also reference existing common 

ontologies and provide links to other upper-level ontologies to support interoperability between 

different semantic descriptions in the IoT domain. 

     

3.2 Semantic annotations need to be processed and analyzed   

Using semantic annotations in the IoT domain provides machine-readable and machine-

interpretable metadata to describe the IoT resources and data. However, a key issue that needs to 

be considered is that machine-interpretable data is still not necessarily machine-understandable 

data. The semantic Web technologies include well-defined standards and description frameworks 

(e.g. RDF, OWL, SPARQL) and a variety of open-source and commercial tools for creating, 

managing, querying, and accessing semantic data. However, this still does not eliminate the key 

role of information analytics and intelligent methods, which can process and interpret the data and 

create meaningful abstractions. The semantic annotations can support more effective mechanisms 

to be designed to utilise and integrate the IoT data, but autonomous and seamless integration of 

the data still requires effective reasoning and processing mechanisms (to be further discussed in 

Sections 4 &5). The ontologies and semantic models need to be simple and light weight to make 

them suitable for the resource constrained environments. Accessing to the IoT data and semantic 

descriptions, and management of the resources can be also supported using service oriented 

solutions.   

 

3.3 Semantic technologies are not just hype!  

Semantic technologies have matured over the years, and there are a number of existing tools and 

solutions to publish, annotate, query, search, and discover the semantic data. Semantic 

technologies have also been applied to service oriented technologies to provide interoperable 

interface, process, and service descriptions. Ontologies and semantic description frameworks 

provide an effective way to share and agree on a common vocabulary and knowledge model for 

describing the data, which can be machine-interpretable and represented in interoperable and re-

usable forms. However, the IoT resources can be constrained devices that operate in dynamic 

environments. Therefore, it can be argued that introducing semantic annotations and metadata 

hinders effective utilization of resources and that they are not suitable for use in networks and 

devices with limited memory, process and energy resources (Preuveneers, 2008). Fortunately, 

some complex Internet and Web technologies have already been customized and applied to the 

resource constrained environments. 6LowPAN (Shelby & Bormann, 2009) and CoAp (Bormann, 

Castellani & Shelby 2012) are examples of recent technologies that have been developed to 

address the limitations of applying Internet and Web –based solutions to the IoT domain. 

6LowPAN provides IP-based solutions and CoAp provides a transfer protocol for constrained 

environments. Similarly, lightweight semantic models can also be introduced for the IoT domain. 

Compression mechanisms, similar to those used in 6LowPAN and CoAp, can be used to create 

and communicate small size semantic descriptions. Another key aspect is that the semantic 

annotations can be added to the data at different stages (e.g. when the data arrives at a node with 

more powerful resources, such as a gateway). Figure 2 shows a view on how semantics can be 



used at different levels in IoT. For example, in (Ganz et al, 2011) a resource annotation and sensor 

device description based on W3C SSN ontology is provided when the nodes are connected to a 

gateway. Designing lightweight semantic description models (Guinard et al, 2010) and effective 

representation frameworks such as Binary RDF Representation (Fernández et al, 2011) are some 

of the recent works that can provide effective semantic data representations for the IoT domain.  

 

 
Figure 2. Semantics at different levels in IoT 

 

4. RELATED DEVELOPMENTS 

To help solve problems of interoperability among IoT systems, caused by the heterogeneous and 

distributed nature of the “Things,” the IoT community has begun to adopt semantic Web 

technologies. Towards this goal, a number of modelling approaches and ontologies used to 

annotate and describe the IoT data have been developed. Semantic descriptions and annotations 

are used to represent devices, real-world objects and events, and services and business process 

models. These semantic descriptions support the automated management and interaction of the 

different components of the IoT systems. In the following, we review some of the recent 

developments  that use semantic technologies in the IoT domain. 

 

4.1 Semantic modeling and ontology development 

Ontologies in IoT have been developed for a number of uses, including the description of sensor 

and sensor networks,  IoT resources and services, smart “Things”, etc. In this section we review 

some of the most important ontologies in the IoT domain and give a brief overview of the recent 

activities on the ontology developments in this field. 

 

An early work on defining common interfaces and descriptions for IoT related data is provided by 

the Sensor Web Enablement (SWE) group at OGC. The main specifications defined by OGC are: 

Observations & Measurements (O&M), which defines a standard model and XML Schema for 

encoding real-time and archived observations and measurements of sensor data; Sensor Model 

Language (SensorML), which is a standard model to describe sensor systems and processes 



associated with sensor observations in an XML-based schema; Sensor Observations Service 

(SOS), which is a standard Web service interface for requesting, filtering, and retrieving 

observations and sensor system information; Sensor Planning Service (SPS), which is a standard 

Web service interface and acts as an intermediary between a client and a sensor collection 

management environment; PUCK Protocol, which defines how to retrieve a SensorML description 

and other information and can enable automatic installation, configuration and operation of sensor 

devices; SWE Common Data Model, which is used in nodes to exchange sensor related data; 

SWE service model, which defines data types used across SWE services. The PubSub Standards 

Working Group
5
 is implementing the SWE standards to enable publish/subscribe functionality for 

OGC Web Services and define the methods to realise the core publish/subscribe functionality for a 

specific service binding (e.g. using SOAP, RESTful). 

    

The models and interfaces provided by OGC define a standard framework for dealing with sensor 

data in heterogeneous environments. The primary representation models in SWE are encoded in 

XML, which has significant limitations in semantic interoperability and defining associations 

between different elements.  

 

The W3C Semantic Sensor Networks Incubator Group has developed an ontology for describing 

sensors and sensor network resources, called the SSN ontology (Lefort et al., 2011; Compton et 

al., 2012). The ontology provides a high-level schema to describe sensor devices, their operation 

and management, observation and measurement data, and process related attributes of sensors. It 

has received consensus of the community and has been adopted in several projects
6
.  To model the 

observation and measurement data produced by the sensors, the SSN ontology can be used along 

with other ontologies such as the Quantity Kinds and Units ontology
7
 and the SWEET ontology

8
. 

The SSN has also been used with domain ontologies to develop various smart Things ontologies, 

such as the smart product ontology (Nikolov et al, 2011).  

 

The IoT domain, however, is not only limited to sensors and sensor networks. The physical world 

objects (i.e. “Things”), also referred to as “Entities of Interest,” their features of interest, spatial 

and temporal attributes, resources that provide the data and their related service are other 

important features that need to be modelled. Autonomous integration of the IoT data and 

resources to the business process requires machine process-able descriptions of execution 

requirements. In (De et al., 2011) a set of models for IoT entities, resources and services is 

described. An entity represents a ‘Thing’ in IoT and is the main focus of interactions by humans 

and/or software agents. This interaction is made possible through a hardware component, a 

‘device’, which allows the entity to be part of the digital world by mediating the interactions. The 

actual software component that provides information on the entity or enables controlling of the 

device is called a ‘resource’. Finally, a ‘service’ has standardised interfaces and exposes the 

functionality of a device by accessing its hosted resources (De et al., 2011). Modeling of business 

processes by using semantically annotated resources that take dynamicity of the IoT environments 

into account is described in (Meyer et al., 2011).   
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In general, to achieve autonomous and seamless integration of the IoT data in business 

applications and services, semantic description of different resources in the IoT domain is a key 

task. The aforementioned works are some examples of the recent efforts that have been made to 

address this issue. The semantic descriptions and annotations need to be provided at “Things” 

level, device and network level (e.g. W3C SSN ontology), service level (e.g. SemSOS) (Henson et 

al., 2009), and interaction and business process level (e.g. the IoT-aware business process 

modeling) (Guinard  et al., 2010) to enable autonomous processing and interpretation of the data 

by different providers and users in the IoT domain.  

 

4.2 Linked sensor data 

Semantic annotations can describe IoT resources, services and related processes. However, often 

there is no direct association to the domain knowledge in the core models that describe the IoT 

data. Different resources, including observation and measurement data, also need to be associated 

with each other to add meaning to the IoT data. Effective reasoning and processing mechanisms 

for the IoT data, and making it interoperable through different domains, requires accessing 

domain knowledge and relating semantically enriched descriptions to other entities and/or existing 

data (on the Web). Linked Data is an approach to relate different resources and is currently 

adopted on the Web.  The four principles, or best practices, of publishing data as linked data 

include (Berners-Lee, 2006): 

 

1. Using URI’s as names for things; everything is addressed using unique URI’s. 

2. Using HTTP URI’s to enable people to look up those names; all the URI’s are accessible 

via HTTP interfaces. 

3. Providing useful RDF information related to URI’s that are looked up by machine or 

people; 

4. Linking the URI’s to other URI’s. 

 

The current linked open data (LOD)9 effort on the Web provides a large of number of interlinked 

data represented in RDF accessible via common standard interfaces (Bizer et al, 2009). The linked 

data approach is also applied to the IoT domain by providing semantic data and linking it to other 

domain dependent resources such as location information and semantic tags; e.g. the work 

described in (Patni, Henson & Sheth, 2010a; Page et al, 2009). The linked data approach enables 

resources described via different models and ontologies to be interconnected. Linking the data to 

existing domain knowledge and resources also makes the descriptions more interoperable. 

Providing automated mechanisms for semantic tagging of the resources using the concepts 

available as linked data (e.g. such as those available on the LOD cloud
10

), and defining automated 

association mechanisms between different resources (e.g. based on location, theme, provider and 

other common properties) make the IoT data usable across different domains. The following are 

some sample use cases that use the linked data approach to describe the IoT data (e.g. sensor 

data). 

 

Kno.e.sis linked sensor data: Linked Sensor Data is an approach to representing and publishing 

sensor descriptions and sensor observations on the Web using the Linked Data best practices. 

Publishing sensor data as Linked Data enables discovery, access, query, and interpretation of 
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sensor data. Patni et al. (Patni et al., 2010a) have developed an RDF dataset
11

 containing 

expressive descriptions of ~20,000 weather stations in the United States and over 160 million 

sensor observations. In total, this results in over 1.7 billion RDF triples. The data originated at 

MesoWest12, a project within the Department of Meteorology at the University of Utah, which has 

been aggregating weather data since 2002. On average, there are about five sensors per weather 

station measuring phenomena such as temperature, visibility, precipitation, pressure, wind speed, 

humidity, etc. In addition to location attributes such as latitude, longitude, and elevation, there are 

also links to locations in GeoNames
13

 that are near each weather station. This dataset has been 

integrated with a semantically enabled Sensor Observation Service (SemSOS) (Henson et al., 

2009) and has been used to enable sensor discovery queries based on named locations (e.g., find 

sensors near Dayton International Airport) rather than longitude and latitude coordinates 

(Pschorr, 2010). Figure 3 shows a screenshot of a demonstration application that is created using 

this data. The application allows browsing and accessing the individual data by selecting locations 

on a map or by searching for location concepts in GeoNames that are used to annotate the data 

(Patni et al, 2010b).  

 

 
Figure 3. Browsing Kno.e.sis Linked Sensor Data  

 

Sense2Web linked sensor data platform: Sense2Web provides graphical user interfaces to 

annotate the IoT data (i.e. resource description, real world entities and services) using concepts 

obtained from linked open data cloud (e.g. DBPedia
14

 and GeoNames) and also other local 

domain ontologies. The annotated data is published as RDF triples and is available via a common 

SPARQL-end point (Barnaghi et al, 2010). Sense2Web has also implemented RESTful interfaces 

that enable direct publication, access and query of linked IoT data (De et al, 2012). This platform 

provides two different approaches to linked data; one using publically available linked data 

resources as domain knowledge to annotate the resources and second publishing the annotated 

data as linked data resources. Figure 4 shows a screenshot of the resource annotation and 

publication interface in Sense2Web.  
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Figure 4. Resource annotation using linked open data concepts 

 

 

Linked Sensor Data and RESTful serving of RDF and GML: Page et al. (Page et al, 2009) 

present an API to expose data from the Channel Coastal Observatory in the UK, using linked data 

principles. The presented API uses REST and linked data principles that allow supporting both 

web clients and the OGC GML
15

 clients. The presented platform uses URIs and provides semantic 

annotations in the form of linked data to represent observation and measurement data. This 

enables supporting both legacy GML applications that refer to XML descriptions and semantic 

web clients that use enhanced semantic annotations to interpret and utilise the data.  

 

SensorMasher: SensorMasher uses linked data principals to makes sensor data available on the 

Web (Le Phuoc, 2009). SensorMasher publishes sensor data as Web resources and enables users 

to describe the sensor data using semantic annotations. These semantic annotations are then used 

for discovery and automation support to construct mashups using data from different resources. 

Sensor data published in this platform can be accessed through SPARQL endpoints and RESTful 

services. Users can access the data in JSON, XML, and RDF formats. By exploring links between 

the data resources, users and mashup tools can traverse the sensor data. In addition, SensorMaher 

filters and identifies relations between different data sources, which enhances the process of 

integration of data and applications. Figure 5 shows a screenshot of the SensorMasher platform.  
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Figure 5. The SensorMasher platform 

 

The above described systems are a few samples of how the linked data principles can enhance 

access, querying, filtering, and integration of the IoT data. The linked open data can be also used 

as an abundant source of knowledge for annotating the IoT data. This not only promotes reuse of 

the existing knowledge, but also creates potential to design novel IoT resource and service 

discovery methods. Analyzing the links and semantic descriptions can also support integration of 

different data and construction of high-level abstractions from the data (for example, events or 

perceptions).    

 

4.3 Data abstraction and knowledge extraction 

Processing and analyzing  semantic descriptions for extracting knowledge and enabling enhanced 

interactions with the IoT resources depends on effective querying, analysis, and processing of the 

semantic data and links between the resources. The current query mechanisms for the Semantic 

Web are mainly based on SPARQL. The IoT data is often represented as streams and is 

distributed over different networks with diverse types of data. As the data is real-time and the 

attributes of data (i.e. quality attributes) can change over time, the query mechanisms for IoT need 

to address this dynamicity and agility. Querying and processing the semantic descriptions in large 

scale is also another important issue. There are already mature solutions to work with large-scale 

semantic descriptions e.g. (Oren et al, 2009; Hogan et al, 2010); however in the changing 

environment in IoT requires more efficient query and processing techniques. For example, in IoT, 



resources can appear and disappear over time, the data can be collected from different 

heterogeneous resources, and real time processing of data streams is required for event detection. 

In the past, the knowledge and data engineering efforts in IoT have mainly focused on developing 

infrastructures for the IoT data, such as publication, query and access. As a result, less attention is 

given to intelligent data processing that can exploit and process the IoT data, integrate it to the 

existing business processes and/or creates situation-awareness.  

 

The observation and measurement is the low-level data that is captured by sensors, other devices 

or human users. This could be large volume of data related to an entity of interest or an 

environment. However, the IoT data consumers (i.e. users and applications) are often interested in 

the high-level concepts that refer to machine-interpretable or human-understandable knowledge. 

A sample application of creating such high-level abstractions is discussed in Henson et al. 

(Henson et al., 2012) where sensory observation data is used in a logical inference model to derive 

perceptions from the raw observations. The data abstraction and knowledge extraction processes 

to enable transforming low-level IoT data to high-level knowledge that refer to an event, a pattern, 

are comprehensible to the machines and human users, and play an important role in leveraging the 

full potential of IoT. The high-level abstractions, in relation to domain knowledge in different 

applications, can create a source of perception which will be the driving asset for developing 

intelligent applications and smart environments that use the IoT data.  

 

4.4  Sensor perception 

The act of observation performed by heterogeneous sensors creates an avalanche of data that must 

be integrated and interpreted in order to provide knowledge of the situation. This process is 

commonly referred to as perception, and while people have evolved sophisticated mechanisms to 

efficiently perceive their environment – such as the use of a-priori background knowledge of the 

environment – machines continue to struggle with the task. More specifically, perception is the 

process of deriving abstractions from a set of sensor observations. Given some background 

knowledge – i.e., as a set of relations between entities (or “things”) and their observable qualities 

– and a set of observations, the perception process identifies a set of entities that explain the set of 

observations (Henson et al., 2011).  

 

The primary challenge of machine perception is to define efficient computational methods to 

derive high-level knowledge from low-level sensor observation data. Emerging solutions are using 

ontologies, such as the W3C SSN ontology, to provide expressive representation of concepts in 

the domain of sensing and perception, which enable advanced integration and interpretation of 

heterogeneous sensor data. For a model of perception to be useful for real-world situations, it 

should meet the following requirements (Henson et al., 2012):  

 

Perception is an abductive process – An entity represented as an abstraction is not necessarily 

implied by the set of observations, but rather is a hypothetical explanation of the observations. 

Thus, perception is not a deductive process (in the first-order logic sense of the term), but rather 

an abductive process, meaning an inference to the best explanation. 

 

Graceful degradation with incomplete information – Even with an incomplete set of observations, 

the perception process should still identify a set of explanatory entities. This property is referred to 



as graceful degradation with incomplete information, and it’s often necessary since observing all 

possible qualities is usually impractical. 

 

Abstractions should be generated efficiently – Sensors are constantly streaming observation data 

in real-time. Therefore, to be practically useful, the generation of abstractions should also be 

computed in near-real-time. In addition, in many applications, the perception process must 

compute abstractions of sensor observations within resource-constrained environments such as 

mobile devices or gateway nodes.   

 

Integration with Semantic Web languages – The perception process must generate abstractions 

from observations and background knowledge encoded in Web languages. As discussed above, 

much sensor data is now being annotated with a sensor ontology (i.e., SSN ontology), encoded in 

standard Web formats (i.e., RDF), and is increasingly being made available on the Web (i.e., as 

Linked Data).   

 

4.5 Tools for IoT resource annotation and data query  

Tools for the sensor and sensor data annotation and publication according to common ontology 

models are not only useful because of the functionalities they provide but also the roles they play 

to promote the reuse and wide adoption of the common models. However, to our knowledge, 

currently there are not many publicly available tools for these purposes (in the IoT domain). The 

annotation tool in Sense2Web allows users to annotate sensor data (i.e. resource, entity and 

service descriptions) according to the models presented in (De et al 2011). It also supports the 

linking of the sensor resources to concepts in linked open data cloud (Barnaghi et al, 2010). 

Designing more annotation and publication tools that can support widely accepted ontologies 

(e.g., W3C SSN) and making them publicly available are important for the IoT community to 

promote interoperability and encourage use of common annotation and description frameworks. 

 

A number of tools that aim to address some of the specific requirements of the IoT data have also 

been developed, mostly to support the data queries and through extending the standard 

functionalities in the existing query languages such as SPARQL. The stSPARQL and stRDF 

extend the SPARQL query language and RDF representations with spatial and temporal 

dimensions to facilitate query on sensor data which is mostly time and location dependent 

(Kyzirakos, Koubarakis, & KaoudI, 2009). Continuous SPARQL (C-SPARQL) and streaming 

SPARQL are other extensions of the SPARQL query language to support continuous queries over 

streaming data (Barbieri et al, 2009; Bolles, Grawunder & Jacobi, 2008). EP-SPARQL (Event 

Processing SPARQL) is an extension to SPARQL that enables processing complex events and 

stream reasoning (Anicic et al, 2011). It is designed for timely detection of compound events 

within streams of simple events based on semantic reasoning with background knowledge. 

Most of the tools developed in the semantic Web research can be used in IoT for resource and data 

query, browsing (for linked sensor data), reasoning, etc. However, much of the IoT data has its 

own characteristics and needs to be processed in specific ways. For example, IoT produces huge 

amounts of streaming data which requires continuous and timely processing methods that are able 

to handle large data throughput and at the same time to perform semantic reasoning. This can also 

able allow the IoT systems to continue to update their background knowledge by processing and 

interpreting the new observations related to continuously changing event which is referred to as 

continuous semantics in (Sheth et al 2010). 



5. RESEARCH CHALLENGES 

IoT describes a splendiferous future: a dynamic and universal network where billions of 

identifiable “things” (e.g., devices, people, applications, services, etc.) communicating with one 

another anytime and anywhere; things become context-aware, are able to configure themselves 

and exchange information, and show “intelligent/cognitive” behaviour when exposed to a new 

environment and unforeseen circumstances; intelligent decision-making algorithms will enable 

appropriate rapid responses, revolutionizing the ways business values are generated (Sundmaeker 

et al, 2010).  

 

Back to the reality, the current research and developments are still too far from that vision. 

Diversity, heterogeneity and spatiotemporal dependency of IoT data and resources make 

physically interconnected things disconnected at semantic levels. Common frameworks are 

essential to describe and represent the data and to make it seamlessly accessible and process-able 

across different domains. Still, we have not seen scalable methods which can derive actionable 

and reliable knowledge and create perceptions from the large amount of data generated by the 

physical devices and human sensors (Sheth 2009b), especially when quality of data depends on 

many factors (e.g., sensing devices, environmental variables and data sources). Another distinctive 

characteristic of IoT compared to other research areas is the high dynamicity. IoT requires 

efficient mechanisms and methods that can handle large amount of data and respond to the 

identified phenomenon and events arising from the environment in a timely fashion. Furthermore, 

security and privacy issues, trust and reliability of the data are also important for IoT based 

applications and services, especially those in the business domain. In what follows, we present a 

detailed analysis on the major research challenges and opportunities related to applying semantic 

technologies into the IoT domain. 

 

5.1 Dynamicity and Complexity 

Real world data is more transient, subject to environment changes and it is mostly time and 

location dependent. While semantic technologies and semantic annotation help describe the 

meanings behind data and enable description of different attributes of the resources and networks 

that provide data, the pervasiveness and volatility of the underlying environments require 

continuous updates and monitoring of the descriptions. Although this dynamicity does not apply 

to all the real world resources, in many cases when the status of the resource (e.g. quality of 

measurement, energy profile, and network or power outage) changes the semantic descriptions 

need to be updated accordingly. Addressing this dynamicity and providing up-to-date descriptions 

that reflect the current state of the resources (and their data) become a challenging issue when 

scalability, diversity and network/resource constraints are taken into consideration. Another issue 

that hinders maintaining up-to-date semantic description of the IoT resources is mobility and 

ubiquity of the resources which imply continuous updates in real-time streaming data processing 

scenarios. The issues of dynamicity and complexity have a significant impact on many aspects of 

the IoT such as data and resource access services, semantic description publication and 

maintenance, data analysis, aggregation and mining. Further research on resource compensation 

and adaptation methods, semantic event processing and analysis, continuous semantic data 

processing mechanisms is needed to address these two issues. 

 



5.2 Scalability 

Creating semantic annotation frameworks and domain knowledge models for describing a large 

number of entities, devices and their related data is critical for knowledge and data engineering in 

IoT. The IoT data refers to different phenomena in the real world; so the semantic description and 

annotation of data need to be associated with domain knowledge of real world resources and 

entities. In some applications, initiatives such as Linked Open Data can be used as domain 

knowledge to describe thematic and spatial aspects of the IoT data; however, the community-

driven knowledge sources such as Linked Open Data are prone to errors and inconsistency (due to 

lack of quality control). Many applications develop and maintain their own domain knowledge, 

but reuse and interoperability is an issue. Granularity of the descriptions (e.g. in describing the 

location data) is another important issue; the more precise terms and concepts used in describing 

the semantics, the more extensive will be the domain knowledge. Maintaining large-scale and 

distributed semantic data is never an easy task. In recent years there has been a number of works 

by the semantic Web community on introducing efficient approaches to store, process, reason and 

query large scale semantic data in distributed environments.  However, what makes semantic data 

handling in IoT more challenging and fraught with technical difficulties is the scale of data 

generated by its corresponding resources, continuous changes in the state (and consequently 

description) of the resources and data and volatility of the IoT environments. The research in this 

area needs to address issues such as automated (or semi-automated) annotation of the resources, 

semantic association discovery and analysis (when resources appear or are deployed), efficient 

solutions to create linked IoT data and to explore and analyse the links between different 

resources. Creating tools and APIs for annotating the resources and observation and measurement 

data, constructing the semantic repositories and implementing light-weight services that allow 

accessing and querying the sensory data and resource descriptions are also essential in creating a 

scalable IoT.  

 

5.3 Semantic service computing for IoT 

The number of resources and the amount of data produced by the resources in IoT introduce 

scalability issues to all aspects of IoT. While semantic technologies are ideal for promoting 

interoperability, given that common ontology models are shared and widely reused, the adoption 

of service oriented computing enables increased scalability of IoT. The concept of IoT services 

that are able to expose capabilities of their corresponding resources defines the paradigm of 

service-oriented computing in IoT. This type of services is also referred to as “real-world services 

on physical devices” (Guinard et al, 2010), and there are a number of existing semantic service 

description models for this purpose (e.g., De et al., 2011, Henson et al., 2009 and Bröring et al 

2009). The IoT services often operate in dynamic environments, and in some cases, the resources 

underlying these IoT services are mobile, unreliable, and capability-constrained. All these factors 

make the IoT services different from most existing legacy services on the Web.  

 

The IoT services can be combined with other applications and services to compose complex, 

context-aware business services. In a service composition process involving the IoT services, 

adaptation and compensation are important design considerations to ensure continuous service 

access and reliable response to consumers' requirements. Automated service composition in a 

resource-constrained environment such as IoT is more challenging than in domains where reliable 

services are abundant. The research in IoT service computing needs to address automated and 

dynamic composition of services and adaptation/compensation mechanisms that can re-configure 



delivery and provisioning of services when context changes. Another key issue is creating 

lightweight service description and implementation solutions that encourage the use of the 

semantic Web services in resource constrained environments. As we have seen in the past, the use 

of the semantic Web services has not gained popularity as it was expected in the early days when 

different models and frameworks for annotating Web service with semantic data (i.e. models such 

as OWL-S16 or WSMO17 have not really been used) were introduced. The complexity involved in 

describing the services using the common semantic Web service frameworks has hindered wide 

adaptation of the semantic Web services. We argue that the concept of introducing the IoT data 

and resource capabilities as a service will soon change this paradigm. The need for introducing 

enhanced description frameworks for the IoT services (with diverse attributes, capabilities and 

qualities) and associated mechanisms that enable publishing, discovery, testing and provisioning 

of this type of services will become important issues for the research community (for example, 

some of the recent solutions such as SA-REST
18

 or WADL
19

 can be adapted for developing IoT 

service models).  

 

5.4 Distributed data storage/query 

With large volumes of data and semantic descriptions, efficiency of storage and data handling 

mechanisms become a key challenge; especially considering the scale and dynamicity involved. 

The streaming sensory data can be stored (together with their semantic descriptions and possibly 

domain knowledge) either temporarily or for longer spans of time. Designing and implementing 

repositories than enable publishing and accessing the semantic data in large distributed and 

dynamic environments, and providing efficient indexing and discovery mechanism are important 

issues in IoT. More efficient mechanism on information search and retrieval, indexing, query, and 

information access will be required to address the issues such as: data discovery and information 

analytics using semantic data distributed across many repositories; supporting real-time query and 

aggregation over multiple data streams; finding relevant data among many resources and 

providers; and subscribing to events and data that can be provided by different resources. Cloud 

computing is clearly a promising technical approach to address some of these challenges. 

However, the solutions for handling, maintaining, and processing the data still need to be scalable 

and efficient; simply putting a centralised and non-scalable solution in the cloud will not make it 

scalable or very efficient.  

 

5.5 Quality, trust, and reliability of data 

The IoT data is provided by different sensory devices or citizen sensors (Sheth, 2011). This data is 

prone to errors and quality changes. Different semantic description models such as the W3C SSN 

ontology offer a means to describe quality related aspects of data. However, the quality of 

observations and measurements can change over time, for example, changes in the environment, 

faults in devices, or errors in device settings. Inaccuracy and varying qualities in the IoT data are 

unavoidable. Detecting and filtering anomalies and false readings from the devices, along with 

reliable semantic descriptions of quality related attributes of the IoT data, can help detecting 

errors, and help retrieve and process the data according to different quality requirements.  When 
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data is provided by different resources, trust is another key issue. Trustworthiness of resources, 

identification of the source providing the data, and an understanding of accuracy and reliability of 

the data, can be supported by semantics describing quality and trust related attributes for the 

resources and providers. While semantics can play an important role for defining trust and 

reliability attributes, trust model development and its feedback and verification mechanisms are 

major issues that need to be addressed.  

 

5.6 Security and privacy  

IoT data is often personal. It can describe our environment, the status of our homes and cities, or 

our personal health and activities. The mechanisms to provide and guarantee the security and 

privacy of data are curial issues in IoT. Semantics can help specify verification measures and 

requirements and provide machine-interpretable description of desired security and privacy 

requirements while sharing and communicating the IoT data (from the data publisher point of 

view). Provenance of data and analysis methods that can effectively utilise the provenance data 

are also important. As data is communicated over the Internet and can be shared with different 

parties and users, it is also important to define appropriate access control (authentication and 

authorization) mechanisms, e.g., who can use the data, what part of the data they can use, when 

and where they can use the data. Further development of IoT will also be highly dependent on 

developing reliable and efficient solutions that can support and maintain security and privacy 

requirements in the IoT domain. The research community needs to consider developing efficient 

privacy and security solutions that can be applied and used in resource-constrained environments 

with various types of devices and communication networks as a part of the IoT design.  

 

5.7 Interpretation and perception of data  

Creating high-level abstractions through machine perception from the IoT data is a key enabler for 

developing situation-aware applications that can intelligently respond to the changes in the real 

world. Perception is a primary basis of human intelligence and experience. Providing 

interpretation and analytics methods for machines to process and elucidate changes and events in 

the physical world will enable machines to perceive their surrounding environment. Semantic 

descriptions and background knowledge provided in machine-readable and interpretable formats, 

in cooperation with intelligent information analytics and data processing techniques, will support 

transforming enormous amount of raw observations created by machine and human sensors into 

higher-level abstractions that are meaningful for human or automated decision making processes. 

However, machine perception in IoT adds additional challenges to the problems that conventional 

AI methods have been trying to solve in the past. Examples of such additional challenges include: 

integration and fusion of data from different sources, describing the objects and events, data 

aggregation and fusion rules, defining thresholds, real-time processing of the data streams in large 

scale, and quality and dynamicity issues. The research is this field needs to develop solutions that 

can efficiently query and access the data from various sources considering their constraint 

environments, analyze the data and identify patterns and anomalies, associate the identified 

patterns with existing knowledge to create higher-level abstractions or new knowledge. 

 

 



6. CONCLUSIONS 

Adding semantics to different levels of IoT ensures that data originating from different sources is 

unambiguously accessible and process-able across different domains and users. Observation or 

measurement data collected from the real world can be semantically described to facilitate 

automated processing and integration in relation to domain knowledge and other existing 

resources in the cyber world; resources and components in the IoT framework (e.g. sensors, 

actuators, platform and network resources) can be described using semantic annotations to enable 

effective discovery and management of them; at a higher-level, the IoT services and their 

interfaces can also be semantically described to enable service discovery and composition as well 

as scalable access to the IoT data. Different knowledge engineering and machine learning 

techniques have also been used to process the IoT data and associated semantics to extract new 

knowledge and create perception from the physical world observations and measurements.   

 

Initial work such as the W3C SSN ontology has shown success in describing common attributes 

of the IoT related resources (i.e. in this case sensor devices) by accommodating requirements from 

different stakeholders. However, the complexity of annotating and describing the resources and 

their data using detailed ontologies hinders the widespread adoption of comprehensive semantic 

models in IoT.  IoT and using semantics in IoT are still in their early days. The IoT community 

requires coordinated efforts to define more vocabularies and description frameworks to represent 

resources, data and services in the IoT domain. Looking at the future prospect of using semantics 

in the IoT domain, lightweight and easy-to-use ontologies seem to have a better chance of being 

widely adopted and reused in order to create an interoperable platform across different domains 

and applications. Furthermore, providing automated or semi-automated methods and tools to 

annotate, publish and access the semantic descriptions also play essential roles in using semantic 

technologies to enhance processing and management of the data in IoT. Most of the existing 

semantic tools and techniques have been created mainly for Web resources and have not taken 

into consideration the dynamicity of the physical environments and the constraints of the IoT 

resources. Future work in this area should embrace dynamicity, volatility and scalability, and 

provide solutions that are easily adaptable to the resource constrained and distributed 

environments. 

 

The linked data principles have been applied to the IoT domain to support creation of more 

interoperable and machine process-able data and resource descriptions (e.g., for sensors and 

sensor networks). Including domain knowledge and linking IoT resources to external data (e.g., 

the linked open data cloud or existing knowledge base) that describe different thematic, spatial 

and temporal concepts is also another key aspect in supporting effective interpretation and 

utilisation of the IoT data. The same principles should be applied in a broader range (not only for 

sensors) to create a truly interconnected network of Things.  

 

In this paper, we have identified several research challenges in applying semantic technologies to 

IoT and outlined the challenges and future research. Most of these challenges and research issues 

are closely related to the dynamicity and pervasiveness of the IoT domain. While there are many 

other areas in IoT to which semantics can contribute, and the research community will continue 

exploring the novel use of semantic technologies in IoT, the multi-disciplinary nature of the IoT 

domain requires synergetic efforts from other fields such as service computing, data mining and 

social science to enhance the processing and utilisation of semantic data in the IoT domain. 
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