Module:TableTools

From medphysmc
Revision as of 17:11, 19 December 2013 by Mr. Stradivarius (talk) (fix the valueUnion function for NaNs (and make it a lot simpler to boot))
Jump to: navigation, search

--[[


-- TableTools -- -- -- -- This module includes a number of functions for dealing with Lua tables. -- -- It is a meta-module, meant to be called from other Lua modules, and should -- -- not be called directly from #invoke. --


--]]

local libraryUtil = require('libraryUtil')

local p = {}

-- Define often-used variables and functions. local floor = math.floor local infinity = math.huge local checkType = libraryUtil.checkType

--[[


-- isPositiveInteger -- -- This function returns true if the given value is a positive integer, and false -- if not. Although it doesn't operate on tables, it is included here as it is -- useful for determining whether a given table key is in the array part or the -- hash part of a table.


--]] function p.isPositiveInteger(v) if type(v) == 'number' and v >= 1 and floor(v) == v and v < infinity then return true else return false end end

--[[


-- isNan -- -- This function returns true if the given number is a NaN value, and false -- if not. Although it doesn't operate on tables, it is included here as it is -- useful for determining whether a value can be a valid table key. Lua will -- generate an error if a NaN is used as a table key.


--]] function p.isNan(v) if type(v) == 'number' and tostring(v) == '-nan' then return true else return false end end

--[[


-- removeDuplicates -- -- This removes duplicate values from an array. Non-positive-integer keys are -- ignored. The earliest value is kept, and all subsequent duplicate values are -- removed, but otherwise the array order is unchanged.


--]] function p.removeDuplicates(t) local isNan = p.isNan local ret, exists = {}, {} for i, v in ipairs(t) do if isNan(v) then -- NaNs can't be table keys, and they are also unique, so we don't need to check existence. ret[#ret + 1] = v else if not exists[v] then ret[#ret + 1] = v exists[v] = true end end end return ret end

--[[


-- union -- -- This returns the union of the key/value pairs of n tables. If any of the tables -- contain different values for the same table key, the table value is converted -- to an array holding all of the different values.


--]] function p.union(...) local lim = select('#', ...) if lim == 0 then error("no arguments passed to 'union'", 2) end local ret, trackArrays = {}, {} for i = 1, lim do local t = select(i, ...) checkType('union', i, t, 'table') for k, v in pairs(t) do local retKey = ret[k] if retKey == nil then ret[k] = v elseif retKey ~= v then if trackArrays[k] then local array = ret[k] local valExists for _, arrayVal in ipairs(array) do if arrayVal == v then valExists = true break end end if not valExists then array[#array + 1] = v ret[k] = array end else ret[k] = {ret[k], v} trackArrays[k] = true end end end end return ret end

--[[


-- valueUnion -- -- This returns the union of the values of n tables, as an array. For example, for -- the tables {1, 3, 4, 5, foo = 7} and {2, bar = 3, 5, 6}, union will return -- {1, 2, 3, 4, 5, 6, 7}.


--]] function p.valueUnion(...) local lim = select('#', ...) if lim < 2 then error(lim .. ' argument' .. (lim == 1 and or 's') .. " passed to 'valueUnion' (minimum is 2)", 2) end local isNan = p.isNan local ret, exists = {}, {} for i = 1, lim do local t = select(i, ...) checkType('valueUnion', i, t, 'table') for k, v in pairs(t) do if isNan(v) then ret[#ret + 1] = v elseif not exists[v] then ret[#ret + 1] = v exists[v] = true end end end return ret end

--[[


-- intersection -- -- This returns the intersection of the key/value pairs of n tables. Both the key -- and the value must match to be included in the resulting table.


--]] function p.intersection(...) local lim = select('#', ...) if lim == 0 then error("no arguments passed to 'intersection'", 2) end local ret, track, pairCounts = {}, {}, {} for i = 1, lim do local t = select(i, ...) checkType('intersection', i, t, 'table') for k, v in pairs(t) do local trackVal = track[k] if trackVal == nil then track[k] = v pairCounts[k] = 1 elseif trackVal == v then pairCounts[k] = pairCounts[k] + 1 end end end for k, v in pairs(track) do if pairCounts[k] == lim then ret[k] = v end end return ret end

--[[


-- valueIntersection -- -- This returns the intersection of the values of n tables, as an array. For -- example, for the tables {1, 3, 4, 5, foo = 7} and {2, bar = 3, 5, 6}, -- intersection will return {3, 5}.


--]] function p.valueIntersection(...) local lim = select('#', ...) if lim < 2 then error(lim .. ' argument' .. (lim == 1 and or 's') .. " passed to 'valueIntersection' (minimum is 2)", 2) end local isNan = p.isNan local vals, ret = {}, {} local isSameTable = true -- Tracks table equality. local tableTemp -- Used to store the table from the previous loop so that we can check table equality. for i = 1, lim do local t = select(i, ...) checkType('valueIntersection', i, t, 'table') if tableTemp and t ~= tableTemp then isSameTable = false end tableTemp = t for k, v in pairs(t) do -- NaNs are never equal to any other value, so they can't be in the intersection. -- Which is lucky, as they also can't be table keys. if not isNan(v) then local valCount = vals[v] or 0 vals[v] = valCount + 1 end end end if isSameTable then -- If all the tables are equal, then the intersection is that table (including NaNs). -- All we need to do is convert it to an array and remove duplicate values. for k, v in pairs(tableTemp) do ret[#ret + 1] = v end return p.removeDuplicates(ret) end for val, count in pairs(vals) do if count == lim then ret[#ret + 1] = val end end return ret end

--[[


-- complement -- -- This returns the relative complement of t1, t2, ..., in tn. The complement -- is of key/value pairs. This is equivalent to all the key/value pairs that are in -- tn but are not in t1, t2, ... tn-1.


--]] function p.complement(...) local lim = select('#', ...) if lim == 0 then error("no arguments passed to 'complement' (minimum is two)", 2) elseif lim == 1 then error("only one argument passed to 'complement' (minimum is two)", 2) end --[[ -- Now we know that we have at least two sets. -- First, get all the key/value pairs in tn. We can't simply make ret equal to tn, -- as that will affect the value of tn for the whole module. --]] local tn = select(lim, ...) checkType('complement', lim, tn, 'table') local ret = {} for k, v in pairs(tn) do ret[k] = v end -- Remove all the key/value pairs in t1, t2, ..., tn-1. for i = 1, lim - 1 do local t = select(i, ...) checkType('complement', i, t, 'table') for k, v in pairs(t) do if ret[k] == v then ret[k] = nil end end end return ret end

--[[


-- numKeys -- -- This takes a table and returns an array containing the numbers of any numerical -- keys that have non-nil values, sorted in numerical order.


--]] function p.numKeys(t) checkType('numKeys', 1, t, 'table') local isPositiveInteger = p.isPositiveInteger local nums = {} for k, v in pairs(t) do if isPositiveInteger(k) then nums[#nums + 1] = k end end table.sort(nums) return nums end

--[[


-- affixNums -- -- This takes a table and returns an array containing the numbers of keys with the -- specified prefix and suffix. For example, for the table -- {a1 = 'foo', a3 = 'bar', a6 = 'baz'} and the prefix "a", affixNums will -- return {1, 3, 6}.


--]] function p.affixNums(t, prefix, suffix) checkType('affixNums', 1, t, 'table') checkType('affixNums', 2, prefix, 'string', true) checkType('affixNums', 3, suffix, 'string', true) prefix = prefix or suffix = suffix or local pattern = '^' .. prefix .. '([1-9]%d*)' .. suffix .. '$' local nums = {} for k, v in pairs(t) do if type(k) == 'string' then local num = mw.ustring.match(k, pattern) if num then nums[#nums + 1] = tonumber(num) end end end table.sort(nums) return nums end

--[[


-- compressSparseArray -- -- This takes an array with one or more nil values, and removes the nil values -- while preserving the order, so that the array can be safely traversed with -- ipairs.


--]] function p.compressSparseArray(t) checkType('compressSparseArray', 1, t, 'table') local ret = {} local nums = p.numKeys(t) for _, num in ipairs(nums) do ret[#ret + 1] = t[num] end return ret end

--[[


-- sparseIpairs -- -- This is an iterator for sparse arrays. It can be used like ipairs, but can -- handle nil values.


--]] function p.sparseIpairs(t) checkType('sparseIpairs', 1, t, 'table') local nums = p.numKeys(t) local i = 0 local lim = #nums return function () i = i + 1 if i <= lim then local key = nums[i] return key, t[key] end end end

--[[


-- size -- -- This returns the size of a key/value pair table. It will also work on arrays, -- but for arrays it is more efficient to use the # operator.


--]] function p.size(t) checkType('size', 1, t, 'table') local i = 0 for k in pairs(t) do i = i + 1 end return i end

return p