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Abstract. A graph is H-free if it has no induced subgraph isomorphic
to H. We determine the computational complexity of the Choosability
problem restricted to H-free graphs for every graph H that does not
belong to {K1,3, P1 +P2, P1 +P3, P4}. We also show that if H is a linear
forest, then the problem is fixed-parameter tractable when parameterized
by k.
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1 Introduction

Graph coloring is without doubt one of the most fundamental concepts in both
structural and algorithmic graph theory. The well-known Coloring problem,
which takes as input a graph G and an integer k, asks whether G admits a k-
coloring, i.e., a mapping c : V (G)→ {1, 2, . . . , k} such that c(u) 6= c(v) whenever
uv ∈ E(G). The corresponding problem where k is fixed, i.e., not part of the
input, is denoted by k-Coloring. Since graph coloring naturally arises in a
vast number of theoretical and practical applications, it is not surprising that
many variants and generalizations of the Coloring problem have been studied
over the years. There are some very good surveys [1,28] and a book [22] on the
subject.

One well-known generalization of graph coloring, called List Coloring,
was introduced by Vizing [29] and Erdős, Rubin and Taylor [7]. This problem
takes as input a graph G and a list assignment L = {L(u) | u ∈ V (G)} of
admissible colors for its vertices, and asks whether G admits a coloring c such
that c(u) ∈ L(u) for each u ∈ V (G); such a coloring c is said to respect the list
assignment L. We say that L is a k-list assignment if each of the lists L(u) in
L contains k colors. A graph G is k-choosable if for every k-list assignment L of
G there exists a coloring that respects L. The corresponding decision problem
is called the Choosability problem. If k is fixed, we denote this problem by
k-Choosability.

The Choosability problem has received increasing attention since the be-
ginning of the 90s. The problem is known to be very difficult: Gutner and Tarsi
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[17] showed that k-Choosability is Πp
2-complete on bipartite graphs for any

fixed k ≥ 3, where Πp
2 is a complexity class in the polynomial hierarchy contain-

ing both NP and coNP (we refer to [10] for the exact definition of this complex-
ity class). On the positive side, 2-Choosability can be solved in polynomial
time on all graphs [7]. The problems 3-Choosability and 4-Choosability
remain Πp

2-complete on planar graphs [16], whereas every planar graph is 5-
choosable [27].

We study the Choosability problem on graphs that are characterized by
a forbidden induced subgraph H. A graph G is H-free if none of its induced
subgraphs is isomorphic to H. We write F1 + F2 to denote the disjoint union
of two graphs F1 and F2, and rF to denote the disjoint union of r copies of a
graph F . The path on ` vertices is denoted by P`, and K1,3 denotes the claw,
i.e., the star with four vertices.

In Section 2, we determine the computational complexity of the Choos-
ability problem restricted to H-free graphs for all but four graphs H. More
precisely, we show that the problem is NP-hard for every graph H that does
not belong to {K1,3, P1, 2P1, 3P1, P1 + P2, P1 + P3, P2, P3, P4}. On the posi-
tive side, we show that the problem can be solved in polynomial time if H ∈
{P1, 2P1, 3P1, P2, P3}. This leaves open the complexity of the problem when
H ∈ {K1,3, P1 + P2, P1 + P3, P4}.

Let us briefly discuss these four remaining cases. If H ∈ {P1+P2, P1+P3, P4},
then the class of H-free graphs contains the class of complete bipartite graphs
as a subclass. Any attempt to show polynomial-time solvability of Choosabil-
ity on H-free graphs for H ∈ {P1 + P2, P1 + P3, P4} can therefore initially
be restricted to complete bipartite graphs only. Although several results on
choosability of complete bipartite graphs exist in the literature [20,25,26], the
computational complexity of the Choosability problem on complete bipartite
graphs remains open. The last case, H = K1,3, is also well-studied in the litera-
ture [8,13,14,15]. The class of K1,3-free graphs, better known as claw-free graphs,
contains the class of line graphs as a subclass. The well-known and long-standing
List Coloring Conjecture, usually attributed to Vizing (cf. [18]), states that ev-
ery line graph is k-choosable if and only if it is k-colorable. It is known that the
k-Coloring problem is NP-complete on line graphs for all k ≥ 3 [21,24]. This
implies that k-Choosability is NP-complete on line graphs for every k ≥ 3,
unless the List Coloring Conjecture is false. Consequently, assuming the List
Coloring Conjecture is true, k-Choosability is NP-hard on K1,3-free graphs
for every k ≥ 3, implying that Choosability is NP-hard on this graph class as
well.

In Section 3, we consider the parameterized complexity of the Choosability
problem on H-free graphs where H is a linear forest, i.e., a disjoint union of one
or more paths. Golovach and Heggernes [11] proved that Choosability on P5-
free graphs is fixed-parameter tractable with parameter k, i.e., can be solved in
time f(k) · |V (G)|O(1) for some function f that only depends on k. We generalize
this result by showing that Choosability on H-free graphs is fixed-parameter
tractable with parameter k for every linear forest H. Our result is obtained by
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combining results of Alon [1] and Fellows et al. [9] together with a very recent
result of Atminas, Lozin and Razgon [2] on graphs without long induced paths.
We point out that extending our result to fixed-parameter tractability for non-
linear forests H is not possible, assuming that the List Coloring Conjecture is
true and P 6= NP. The reason is that every non-linear forest H contains a vertex
of degree at least 3, implying that every H-free graph is K1,3-free for such graphs
H. As we noticed above, k-Choosability is NP-hard on K1,3-free graphs for
every k ≥ 3 if the List Coloring Conjecture is true.

The fact that Choosability on H-free graphs turns out to be fixed-para-
meter tractable with parameter k for every linear forest H is somewhat surpris-
ing, given the fact that a similar result cannot be obtained for the Coloring
problem unless P = NP. The latter follows from the fact that there exist com-
binations of integers k and linear forests H for which the k-Coloring problem
for H-free graphs is NP-complete; for example, it is known that 4-Coloring
is NP-complete for P8-free graphs [5] and that 6-Coloring is NP-complete for
P7-free graphs [4]. Only very few parameterized results for Coloring on H-free
graphs are known. It is known that this problem is fixed-parameter tractable
with parameter k when H = rP1 + P2 for any fixed integer r [6], but it is
not known whether Coloring is fixed-parameter tractable with parameter k
when restricted to 2P2-free graphs. Although Hoáng et al. [19] proved that k-
Coloring can be solved in polynomial time on P5-free graphs for every integer
k, they posed fixed-parameter tractability of Coloring with parameter k for
this graph class as an open question.

2 Polynomial-time Solvable and NP-Hard Cases

In this section we determine the computational complexity of the Choosability
problem on H-free graphs for all but four graphs H. We will use the following
dichotomy result of Král’, Kratochv́ıl, Tuza, and Woeginger [23].

Theorem 1 ([23]). Let H be a fixed graph. The Coloring problem restricted
to H-free graphs is polynomial-time solvable if H is an induced subgraph of P4

or of P1 + P3, and is NP-complete otherwise.

Theorem 1 provides a complete complexity classification of the Coloring
problem on H-free graphs. Similar classifications exist for two well-known gen-
eralizations of Coloring, namely List Coloring and Precoloring Exten-
sion [12]. The latter problem takes as input a graph G, an integer k and a precol-
oring of G, i.e., a mapping cW : W → {1, 2, . . . , k} for some subset W ⊆ V (G),
and asks whether cW can be extended to a k-coloring of G. The following re-
sult is a significant step towards a complete complexity classification for the
Choosability problem restricted to H-free graphs.

Theorem 2. Let H be a fixed graph. The Choosability problem restricted to
H-free graphs is NP-hard if H /∈ {K1,3, P1, 2P1, 3P1, P1+P2, P1+P3, P2, P3, P4},
and is polynomial-time solvable if H ∈ {P1, 2P1, 3P1, P2, P3}.
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Proof. We start by considering the cases for which we must prove polynomial-
time solvability. Because an H ′-free graph is H-free whenever H ′ is an induced
subgraph of a graph H, we may restrict ourselves to the cases H = 3P1 and
H = P3. Let H = 3P1. It is known that for all k ≥ 1, a 3P1-free graph is k-
choosable if and only if it is k-colorable [14]. Since 3P1 is an induced subgraph of
P1+P3, the result follows from Theorem 1. Let H = P3. Because every connected
component of a P3-free graph G is a complete graph, and therefore 3P1-free, we
obtain polynomial-time solvability by applying the previous argument on each
connected component of G.

Now consider the cases H /∈ {K1,3, P1, 2P1, 3P1, P1 +P2, P1 +P3, P2, P3, P4},
i.e., we let H be a graph that is not an induced subgraph of K1,3, P1 + P3 or
P4. We distinguish two cases, depending on whether or not H has a dominating
vertex, i.e., a vertex that is adjacent to all other vertices.

Case 1. H has no dominating vertex.

We make a reduction from the Coloring problem, which remains NP-complete
on H-free graphs according to Theorem 1. Let G be an H-free graph and k an
integer. We denote the degree of a vertex u ∈ V (G) by dG(u). Then we may
assume without loss of generality that dG(u) ≥ k for all u ∈ V (G), as otherwise
we perform the following well-known procedure (see e.g. [5]). We repeatedly
delete a vertex with degree at most k − 1 from G until no such vertex remains.
The resulting graph Gk (which may be empty) is k-colorable if and only if G is
k-colorable. Moreover, Gk is H-free and can be obtained in polynomial time.

We define k∗ = k +
∑

u∈V (G)(dG(u)− k + 1) and construct a graph G∗ from

G by adding a set of k∗ − k vertices T = {t1, . . . , tk∗−k} that are adjacent to
each other and to every vertex of G. Because H has no dominating vertex and
G is H-free, we find that G∗ is H-free. Hence, it remains to show that G is
k-colorable if and only if G∗ is k∗-choosable.

First suppose that G∗ is k∗-choosable. Then G∗ has a coloring c that respects
the list assignment L∗ = {L∗(u) | u ∈ V (G∗)} with L∗(u) = {1, . . . , k∗} for all
u ∈ V (G∗). Because the k∗ − k vertices in T are mutually adjacent, they are
all colored differently by c. Moreover, because every vertex of T is adjacent to
every vertex of G, no vertex in G has the same color as a vertex in T . Hence, by
taking the restriction of c to V (G), we find that G is k-colorable.

Now suppose that G is k-colorable. We prove that G∗ is k∗-choosable. In order
to do this, let L∗ = {L∗(u) | u ∈ V (G∗)} be an arbitrary k∗-list assignment of
G∗. We will construct a coloring of G∗ that respects L∗. We start by coloring the
vertices of T and, if possible, reducing G∗ by applying the following procedure:

1. As long as there is an uncolored vertex tj ∈ T such that L∗(tj) contains
an unused color x and there is a vertex u ∈ V (G) with x /∈ L∗(u), do as
follows: give tj color x and delete all vertices u ∈ V (G) for which at least
dG(u)− k + 1 used colors are not in L∗(u).

2. Afterwards, consider the vertices of the remaining set T ′ ⊆ T one by one
and give them any unused color from their list.
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It is possible to color all vertices of T by this procedure, because |L∗(tj)| = k∗

for j = 1, . . . , k∗ − k and |T | = k∗ − k ≤ k∗. The procedure is correct due to
the following reason. Let u ∈ V (G). After coloring all vertices of T we can
partition T into two sets Au and Bu, where Au consists of those vertices of T
that received a color not in L∗(u) and Bu = T \Au consists of those vertices of
T that received a color from L∗(u). Then the number of available colors for u is
k∗ − |Bu| = k∗ − (|T | − |Au|) = k∗ − (k∗ − k − |Au|) = k + |Au|, whereas u still
has dG(u) uncolored neighbors in G∗. If k + |Au| ≥ dG(u) + 1, or equivalently,
if |Au| ≥ dG(u) − k + 1, then we may delete u; after coloring all vertices of
V (G∗)\{u}, we are guaranteed that there exists at least one color in L∗(u) that
is not used on the neighborhood of u in G∗, and we can give u this color.

After coloring the vertices in T as described above, we let U denote the
subset of vertices of V (G) that were not deleted while coloring T . Recall the set
T ′ defined in the procedure. We distinguish two cases.

First suppose T ′ = ∅. Then every t ∈ T received a color that does not appear
in the list L∗(u) for at least one vertex u ∈ V (G) that was not yet deleted from
the graph at the moment t was colored. Consequently, the size of some set Au

increases by 1 whenever a vertex of T receives a color. Recall that a vertex u ∈ U
is deleted from the graph as soon as the size of Au reaches dG(u)− k + 1. Since
|T | = k∗ − k =

∑
u∈V (G)(dG(u) − k + 1), every vertex of V (G) is deleted from

the graph at some point during the procedure. Hence U = ∅, implying that G∗

is k∗-choosable due to the correctness of our procedure.
Now suppose T ′ 6= ∅ and let t′ ∈ T ′. Because |L∗(t′)| = k∗ and |T | = k∗ − k,

the list L∗(t′) contains a set D of k colors that are not used as a color for any
vertex in T (including t′ itself). We will show that D ⊆ L∗(u) for every u ∈ U .
For contradiction, suppose there exists a color y ∈ D and a vertex w ∈ U such
that y /∈ L∗(w). By the definition of T ′, vertex t′ received a color z that appears
in the list L∗(u) for every u ∈ U . But according to our procedure, we would not
have colored t′ with color z if color y was also available; note that y is not used
to color any vertex in T \ {t′} by the definition of D. This yields the desired
contradiction, implying that D ⊆ L∗(u) for every u ∈ U . By symmetry of the
colors, we may assume that D = {1, . . . , k}. We assumed that G is k-colorable,
so G has a coloring c : V (G) → {1, . . . , k}, and we can safely assign color c(u)
to each u ∈ U . Due to this and the correctness of our procedure, we conclude
that G∗ is also k-choosable when T ′ 6= ∅.

Case 2. H has a dominating vertex.

First suppose that H is K3-free, where K3 is the complete graph on three vertices.
Because H /∈ {P1, P2, P3,K1,3}, H has a dominating vertex, and H is K3-free, H
is isomorphic to the star K1,s with s + 1 vertices for some s ≥ 4. Consequently,
H has exactly one dominating vertex. Let H ′ = sP1 be the graph obtained from
H by removing this dominating vertex. As shown in Case 1, the Choosability
problem is NP-hard for H ′-free graphs, and hence for H-free graphs as well.

Now suppose that H is not K3-free. Recall that for any fixed integer k ≥ 3
the k-Choosability problem is Πp

2-complete, and hence NP-hard, for bipartite
graphs [17]. Since K3 is an induced subgraph of H, the class of H-free graphs is
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a superclass of the class of K3-free graphs, which in turn is a superclass of the
class of bipartite graphs. This completes the proof of Theorem 2. ut

3 Fixed-Parameter Tractability

Our next result implies that, for every linear forest H, the Choosability prob-
lem for H-free graphs is fixed-parameter tractable when parameterized by k.

Theorem 3. For any linear forest H, the k-Choosability problem restricted
to H-free graphs can be solved in linear time for every fixed integer k.

Proof. Let H be a linear forest with connected components H1, . . . ,Hp. By def-
inition, each Hi is a path on |V (Hi)| vertices. We define ` = |V (H1)| + . . . +
|V (Hp)| + p − 1. Note that the class of H-free graphs is a subclass of the class
of P`-free graphs. We prove that Choosability can be solved in linear time on
P`-free graphs for any fixed integer k, implying Theorem 3.

Let G be a P`-free graph. Atminas, Lozin and Razgon [2] showed that for
any two integers s and r, there exists an integer t(s, r) such that any graph
of treewidth at least t(s, r) contains the path Ps as an induced subgraph or
the complete bipartite graph Kr,r as a subgraph. In order to use this result,

we set s = ` and r = r∗ = d4
(
k4

k

)
log(2

(
k4

k

)
)e (which we explain later). Using

Bodlaender’s algorithm [3] we can test in linear time whether the treewidth of
G is at most t(`, r∗)− 1.

If the treewidth of G is at most t(`, r∗) − 1, then we use a result due to
Fellows et al. [9], stating that the Choosability problem is linear-time solvable
for graphs of bounded treewidth. Suppose that G has treewidth at least t(`, r∗).
Then due to the aforementioned result of Atminas, Lozin and Razgon [2] and
our assumption that G is P`-free, we find that G contains a graph F isomorphic
to Kr∗,r∗ as a subgraph. The average degree of a graph with n vertices and m
edges is equal to 2m/n. Alon [1] proved that any graph with average degree

at least d4
(
k4

k

)
log(2

(
k4

k

)
)e is not k-choosable. Because F has average degree

r∗ = d4
(
k4

k

)
log(2

(
k4

k

)
)e, this means that F is not k-choosable. Since G is a

supergraph of F , we conclude that G is not k-choosable either in this case. ut

4 Conclusions

We finish this note with the following remark. On general graphs, Choosability
is provably harder than List Coloring under the assumption that NP 6= coNP,
as the former problem is Πp

2-complete [7] whereas the latter problem is NP-
complete. However, Theorem 2 shows that Choosability becomes easier than
List Coloring when restricted to 3P1-free graphs. After all, Choosability
is polynomial-time solvable on H-free graphs if H = 3P1 by Theorem 2, while
List Coloring is NP-complete even on (3P1, P1 + P2)-free graphs, which are
exactly those graphs that can be obtained from complete graphs by removing a
number of matching edges [12].
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