

Sebastian Jentschke

UNIVERSITY OF BERGEN

Agenda

- variable types and statistical methods
- statistical tests: assumptions and procedures
- ANOVA: background and calculation (Excel)
- ANOVA: more backgr., typical designs, contrasts
- assumptions for using parametric tests (refresher)
- ANCOVA
- MANOVA and MANCOVA
- MANOVA: profile analysis

Categorical vs. continuous predct.

- categorical predictors (factors) contain a limited number of steps (e.g., male – female, experimentally manipulated or not)
- continuous have a (theoretically unlimited) number of steps (e.g., body height, weight, IQ)
- ANOVA (this session) is for categorical predictors, Regression analysis (next weeks session) is for continuous predictors

Categorical vs. continuous vars.

		Depender	nt variable		
		Categorical	Continuous		
Independent	Categorical	X ² test (chi-squared)	<i>t-test</i> ANOVA		
variable	Continuous	Logistic regression	<i>Correlation</i> Linear regression		

Relation vs. difference hypotheses

- relation hypotheses explore whether there is a relation between one (or more) independent and a dependent variable
- **difference hypotheses** explore whether there is a difference between the steps of one (or more) independent and a dependent variable
- the distinction between IV and DV is blurred for relation hypotheses

 \rightarrow causality can only be inferred if the independent variable was experimentally manipulated

PAGE 5

Within vs. between subject vars.

- within-subject variables are measures acquired from the same person (e.g., administering the same test before and after treatment; subtests / dimension of an IQ / personality test; EEG data)
 → idea that the "performance" or "properties" that characterize the person stay the same
- between-subjects variables are variables that distinguish between individuals (e.g, male-female)

Predictor and dependent variables

- independent = experimental = predictor variable, is a variable that is being experimentally manipulated in order to observe an effect
- dependent = outcome variable is the variable that is affected by the experimental manipulation

Questions? Comments?

- population vs. sample ≈ parameter vs. statistic
 - *population*: large group you want to make assumptions about vs. *sample*: smaller group that you measure / observe (assuming to represent the population)
 - *parameter*: «real» value in the population (e.g., population mean) vs. *statistic*: (e.g., sample average)
- central limit theorem

 Standard error of mean – the more samples are taken from a population, the more exact the mean in the population can be described
 → imagine a series of dice throws (try it out)

•
$$s_{\overline{x}} = s / \sqrt{n}$$

- H₀ Null hypothesis (e.g., there is no group difference, the treatment doesn't work)
- H₁ Alternative hypothesis
- Reject the H₀ (accept / retain H₁): observed difference is larger than exected by chance
- α-level (outer ends of the normal distribution)

- Distributions
 - z: position relative to mean in SDs $(y \eta) / \sigma$
 - t: like z, but corrects for small samples
 - F: $\frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2} \sim F_{\nu_1,\nu_2}$ compares two variances (e.g., explained vs. unexplained)

Figure 2.14 Diagram to show the difference between one- and two-tailed tests

PAGE 12

UNIVERSITY OF BERGEN

Assumptions of statistical tests

PAGE 13

- Type I error (False positive): one rejects the null hypothesis when it is true (α-probability).
- Type II error (False negative): one rejects the alternative hypothesis (fails to reject the null hypothesis) when the alternative hypothesis is true (β-probability).
- Usually deal with Type I errors; Type II errors are esp. important when determining sample size

Questions? Comments?

- compare two (or more) means to see whether they significantly differ from another
- evaluates the differences among means relative to the dispersion of the sampling distribution $H_0: \overline{Y}_1 = \overline{Y}_2 = ... = \overline{Y}_k (\mu_1 = \mu_2 = ... = \mu_k)$

- WHAT WOULD BE THE BEST PREDICTOR VARIABLE FOR AN INDIVIDUAL MEASURE (E.G. BODY HEIGHT) IN A GROUP?
- WHY?
- HOW WOULD THIS CHANGE WITH INTRODUCING A FACTOR (E.G. SEX)?

• $y = b_0 + b_1 \cdot x_1 + ... + b_n \cdot x_n + e$ Y = BX + E

Y, y = dependent variable X, $[x_1...x_n]$ = predictor variable [0, 1]

B, [b₀...b_n] = predictor weights [group mean - sample mean] E, [e] = error term

Figure 12.4 Graphical representation of the different sums of squares when comparing several means using a linear model. Also a picture of Ramsey as a puppy. Tutte would call him chartjunk, but I call him my adorable, crazy, spaniel

PAGE 18

check out Analysis of Variance - Step-bystep.ods on MittUIB for details

- calculate group and sample mean (all groups)
- SS_R calculate the difference between each individual value and its group mean and square it (SS of the *residuals*)
- SS_M calculate the difference between group and sample mean, square it and multiply it by the number of group members (SS of the *model*)

Figure 12.4 Graphical representation of the different sums of squares when comparing several means using a linear model. Also a picture of Ramsey as a puppy. Tufte would call him chartjunk, but I call him my adorable, crazy, spaniel

- MSS = SS / df (sum of squares / degrees of freedom)
- df_R = 15 (observations) 3 (groups)
 df_M = 3 (groups) 1
- $MSS_R = 23,60 / 12 = 1,97$ $MSS_M = 20,13 / 2 = 10,07$
- $F_{(2,12)}$ = 10,07 / 1,97 = 05,12

PAGE 20

Questions? Comments?

 based upon two estimates / components of variance: (1) explained by differences in group means (effect) vs. (2) differences between group mean and individual score (error) $Y_{ii} - GM = (Y_{ii} - \overline{Y}_{i}) + (\overline{Y}_{i} - GM)$ $\sum_{i} \sum_{j} (Y_{ij} - GM)^{2} = \sum_{i} \sum_{j} (Y_{ij} - \bar{Y}_{j})^{2} + n \sum_{i} (\bar{Y}_{j} - GM)^{2}$ + SS_{bq} ($df_{total} = df_{wg} + df_{bg}$) = SS_{wa} SS_{total}

- $df_{total} = N 1$ $df_{wg} = N - k$ $df_{bg} = k - 1$
- $SS_{total} = SS_{K} + SS_{S(K)}$ (SS_K due to the k groups; SS_{S(K)} due to subjects within the group)

one-way between-subjects ANOVA:

factorial between-subjects ANOVA

one-way within-subject ANOVA

		Т	reatment			SS _{to}	F =	MS_K
		<i>K</i> ₁	K_2	K ₃		1	×	MS_{SK}
	S.	.2	S.			SS_K	$SS_{S(K)}$	onc
Subjects	S1 S	S1 S	SI S	S1 S	~	-		are
subjects	52 S	52 S	52 5	52 S	SSK	SS	SSSE	tern
	33	33	33	33	df = k - 1,	s - 1.	(s-1)(k-1)	in b

df = (k - 1), (k - 1)(s - 1)

once individual differences are subtracted, the error term is usually smaller than in between-subject designs

one-way matched-randomized ANOVA

		Т	reatmen	t		SS _{to}	otal
		A_1	A_2	<i>A</i> ₃		55	
	B_1	S_1	<i>S</i> ₂	S ₃		SSK	$SS_{S(K)}$
Blocks	B_2	S_4	S_5	<i>S</i> ₆	55	22	SC SC
	<i>B</i> ₃	<i>S</i> ₇	<i>S</i> ₈	<i>S</i> ₉	df = k - 1,	b = 1,	(b-1)(k-1)

subjects are matched on variable(s) highly related to the DV; per block b are as many subjects as factor steps k; should be more sens. than between-subject des.

mixed between-within-subjects ANOVA

total SS is divided into a component attributable to the between-subjects part of the design (groups), another to the within-subject part (trials); each component is further partitioned into effects and errors; for all between-subjects, there is a single error term consisting of variance among subjects relative to each combination of between-subject IVs

factorial within-subject ANOVA

PAGE 28

design complexity:

- in between-subject designs subjects are nested to one level of IV or one combination of IVs (example: one teaching methods assigned to a classroom; children can't be randomly assigned)
- latin-square designs: to counter the effects of increasing experience, time of day, etc.

(4	a) Nested Design	15	(b) Latin-Square Designs ^a							
Tea	aching Techniqu	ues				Order				
T_1	T_2	<i>T</i> ₃			1	2	3			
Classroom 1	Classroom 2	Classroom 3		S_1	A_2	A_1	A_3			
Classroom 4	Classroom 5	Classroom 6	Subjects	S_2	A_1	A_3	A_2			
Classroom 7	Classroom 8	Classroom 9		S_3	A_3	A_2	A_1			

contrasts:

- with factors with more than two levels or interactions → ambiguity; overall sign. but which difference «caused» the effect
- use contrasts to further investigate the difference
- *df*s as «non-renewable resource»

 → test most interesting comparisons
 at conventional α-levels
 - \rightarrow otherwise use Bonferroni-correct.
 - \rightarrow post-hoc compar. using Scheffé-adjust.

 $F' = (k - 1) \cdot F_{crit}$ (with k-1, df_{err})

• unequal N and non-orthogonality PAGE 30

<i>w</i> ₂	w3
-1	0
1/2	-1
0	-1
	-1 1/2 0

fixed and random effects:

- fixed: selected levels of the IV
- random: sampling random levels of an (continouos) IV (e.g, word familiarity)

parameter estimates:

 sample means are unbiased estimators of population means but with a degree of uncertainty (SEM → confidence intervals)

effect size measures:

indicate to which degree IV(s) and DV are related (variance in the DV that is predictable from IVs)

$$\begin{split} &\eta^{2} = SS_{effect} / SS_{total} \\ &\eta^{2}_{p} = SS_{effect} / (SS_{effect} + SS_{error}) \\ &\omega^{2} \stackrel{\wedge}{=} (SS_{effect} - df_{effect} \cdot MS_{error}) / (SS_{total} + MS_{error}) \\ &\eta^{2} \text{ is flawed: (1) depends on number and sign. of other IVs in the design - proportion} \end{split}$$

explained by any one variable will automatically decrease (\rightarrow partial η^2); (2) describes systematic / explained variance in a sample, but overestimates it in the population (esp. with small Ns $\rightarrow \omega^2$)

see: https://daniellakens.blogspot.com/2015/06/why-you-should-use-omega-squared.html

Questions? Comments?

- conditions for using parametric tests (such as correlation, regression, t-test, ANOVA)
- if one of these conditions is violated, nonparametric tests have to be used
- robustness against a violation of assumptions (most parametric tests are relatively robust against deviation from normality)

 linearity

 (although the ANOVA is more robust against violations of this assumption than a regress.)

 homogeneity of variance = homoscedasticity

 normality and possible causes for normality violations

PAGE 37

Checking assumptions

- linearity (for continuous predictors [ANCOVA]; scatterplot for predictor and dependent variable)
- normality
 - explorative data analysis: Box-Whisker plots for different factor stages, Normality plots
 - K-S-test for normality (within factor-steps)
- homogeneity of variances usually within tests or post-hoc (predictors vs. residuals)

Checking for outliers

- univariate SPSS FREQUENCIES (box plots; for N < 1000 \rightarrow p = .001 \rightarrow z = ±3.3; only for DV and IVs that are used as covariates)
- multivariate: SPSS REGRESSION (Save → Distances → Mahalanobis; calculate "SIG.CHISQ(MAH_1,3)" and exclude p < .001; only for DV and IVs as covariates)
- IQR = Q3 Q1 (sort your variable, take 25% position [Q1] and 75% position [Q3]) Outlier: Q1 – IQR * 1.5 [liberal] / 3.0 [strict] Q3 + IQR * 1.5 [liberal] / 3.0 [strict]

Questions? Comments?

- extension of the ANOVA where main effects and interactions of IVs are adjusted for differences associated with one or more CV
- major purposes:

(1) increase the sensitivity for the main effects by reducing the error term (reduce «undesirable» variance);

(2) adjust the DV as if all participants were the same on the CV (statistical «matching» samples);

(3) assess a DV after adjustment for other DVs (treated as CVs; autom. in MANOVA)

• variance partitioned: between groups (IVs), within group (CV) regression of CVs \rightarrow DV, ANOVA of the IVs on the residuals

research questions:

- explore main effects and interactions of lvs, compare them using contrasts or trend analysis (same as ANOVA; while holding constant prior difference on a CV)
- evaluate the effect of CVs by assessing their expained variance
- evaluate the effect size of the IV after adj. for CVs

theoretical limitations:

- choose a small number of CVs (highly correlated with DV but not correlated with other Cvs)
- CVs must be independent of treatment (gathered before)
- adjusting mean DV score doesn't represent a «real-world»-situation

practical issues:

- reliability of CVs ($r_{xx} > .8$)
- sufficient sample size per cell (level of IVs)
- absence of multicollinearity and singularity (SMC > .5 ~ redundant)
- linearity between CVs and between CVs and DV
- homogeneity of regression
- Group 3
 Group 3

 Group 2
 Group 1

 Group 1
 Group 1

 Covariate (X)
 Covariate (X)

PAGE 44

(a) Homogeneity of regression (slopes)

(b) Heterogeneity of regression (slopes)

ANCOVA fundamental equation

D = [1,85, 100; ...

 1,
 85,
 100;
 ...

 1,
 80,
 98;
 ...

 1,
 92,
 105;
 ...

 2,
 86,
 92;
 ...

 2,
 82,
 99;
 ...

 2,
 95,
 108;
 ...

 3,
 90,
 95;
 ...

 3,
 78,
 82]

S1 = sum(D(D(:, 1) == 1, 2:3)) S2 = sum(D(D(:, 1) == 2, 2:3)) S3 = sum(D(D(:, 1) == 3, 2:3)) SB = [S1(1), S2(1), S3(1)]SA = [S1(2), S2(2), S3(2)]

	Groups																			
			Trea	L	Tre	eatn	nen	t 2		Control										
			Pre		Pos	t	Pre	?	P	ost	1	Pre	1	Post						
			85		100)	86	5		92		90		95						
			80		98	3	82	2		99		87		80						
			92		105	5	95	5	1	08		78		82						
S:	Sun	15	257		303	3	263	3	2	299	1	255		257						
SSbg SSwg	=	รเ รเ	um (um (SA D(:,	۸ 3	2))	./	/	3 2)	-	- :	su su	m(m(SA SA)	./^	、2 2)	 	9 3
SSbgx SSwgx	=	รเ รเ	um (um (SB D(:,	۸ 2	2))	_/	/	3 2)	-	- :	su su	m(m(SB SB).	./ ^	、2 2)	//	9 3
SPbg SPwg	=	SA D(、 * 〔:,	S 2	в')'	/	3 5 5	; -)(:	-	su 3	m()	(S/ _	A) S	* A	S *	un Se	1(S	5B) /	3 [/]	9
SStbg SStwq	=	SS (S SS	sbg SSb Swg	– gx –	(+ S	(S S Pw	Pb Sw	og /g> ∧	+ () 2	S - /	Pv	vg) SPI SSI) wg wg	^ X	2 2	/	' S	SSw	gx))
FCV = 1 - f Fiv = 1 - f etan	cdi cdi (S cdi	SSt F(F SSb F(F =	bg cv g iv	/ /, /,	2 2, 2 2, 2,) 5) 6		() () ()	55 55' 51	tw wg ba	g	/ /	5 6 55)) tw	a)					

important issues:

- optimal set of CVs weighed against loss in dfs, «power loss» if CVs are substantially correlated
- CVs are predictors in a sequential regr. perspect. (but multiple CVs er entered at once std. regr.)
- testing for homogeneity of regression

MANOVA POST BY TREATMNT(1, 3) WITH PRE /PRINT=SIGNIF(BRIEF) /ANALYSIS = POST /METHOD=SEQUENTIAL /DESIGN PRE TREATMNT PRE BY TREATMNT.

PAGE 46

design complexity:

- a CV that is measured only once does not provide adjustment for within-subject effects
- adjustment for interactions of CV(s) and IV(s) no adjustm. (SPSS MANOVA), adj. (SPSS GLM)
- different CVs for the levels of IVs (imposs. in SPSS)

design alternatives:

- use differences (change scores) instead the pretest as CV or implement it as within-IV
- problem of change scores and floor or ceiling eff.
- problems with insufficient reliability
- blocking (dichotomize a CV: low, medium, high) or randomized blocks (k particip. per block)

 \rightarrow does not need linearity, even works for curvilin.

Questions? Comments?

- generalization of the ANOVA for the combination of several DVs statistically identical to linear discriminant analysis (MANOVA emphasizes whether multivar. differences are larger than chance; LDA emphasizes prediction, reliable separating groups by a multivariate combination / pattern)
- different linear combinations of DVs are formed for all main effects and interactions
- protection against inflation of type-I-error
- may reveal difference that don't show in UniANOVA
- avoids sphericity violations in univ. rep.-meas. ANOVA
- MANCOVA: simult. correcting for differences in covariates PAGE 50

assumptions:

- multivariate normality
- absence of outliers (uni- and multivariate)
- homegeneity of variance-covariance matrices
- linearity
- homogeneity of regression (for MANCOVA)
- reliability of covariates
- absence of multicollinearity and singularity PAGE 51

fundamental equations and calculation:

 $DL = [1, 1, 115, 108, 110; \ldots]$ 1, 2, 100, 105, 115; ... 3, 89, 78, 99; ... 1, 98, 105, 102; ... 2, 105, 95, 98; ... 1. 3, 100, 85, 102; ... 1, 107, 98, 100; ... 2, 95, 98, 100; ... ī, 1, 1, 1, 2, 95, 98, 100; ... 1, 3, 90, 95, 100; ... 0, 1, 90, 92, 108; ... 0, 2, 70, 80, 100; ... 0, 3, 65, 62, 101; ... 0, 1, 85, 95, 115; ... 0, 2, 85, 68, 99; ... 0, 3, 80, 70, 95; ... 0, 1, 80, 81, 95; ... 0, 2, 78, 82, 105; ... 0, 2, 78, 82, 105; ... 3, 72, 73, 102] 0. GM = mean(DL(:, 3:4));T = zeros(2, 2); % treatment
D = zeros(2, 2); % disability
DT = zeros(2, 2); % interaction

```
for ZT = 0:1
     T = T + (mean(DL(DL(:, 1) == ZT, 3:4)) - GM)' * ...
(mean(DL(DL(:, 1) == ZT, 3:4)) - GM) * nnz(DL(:, 1) == ZT);
end
for ZD = 1:3
     D = D + (mean(DL(DL(:, 2) == ZD, 3:4)) - GM)' * ...
(mean(DL(DL(:, 2) == ZD, 3:4)) - GM) * nnz(DL(:, 2) == ZD);
end
for ZI = 1:6
     DT = DT + (mean(DL(DL(:, 1) * 3 + DL(:, 2) == ZI, 3:4)) - GM)' * ... 
(mean(DL(DL(:, 1) * 3 + DL(:, 2) == ZI, 3:4)) - GM) * ... 
nnz(DL(:, 1) * 3 + DL(:, 2) == ZI);
end
DT = DT - T - D
E = (DL(:, 3:4) - GM)' * (DL(:, 3:4) - GM) - D - T - DT
% determininants (det) as the matrix analogue of variance
LT = det(E) / det(T + E)
       = det(E) / det(D + E)
LD
LDT = det(E) / det(DT + E)
FT = ((1 - LT \land (1/1)) / LT \land (1/1)) * (11 / 2)
FD = ((1 - LD \land (1/2)) / LD \land (1/2)) * (22 / 4)
FDT = ((1 - LDT \land (1/2)) / LDT \land (1/2)) * (22 / 4)
ST = 1 - fcdf(FT, 2, 11)
 SD = 1 - fcdf(FD, 4, 22)
SDT = 1 - fcdf(FDT, 4, 22)
```


applicability:

 MANOVA works best with highly negatively correlated DVs and acceptably with moderately (pos. or neg.) correlated Dvs; wasteful if very highly pos. related (no improved prediction) or uncorrelated (no advant. over ANOVA)

statistical inference (Wilks Λ, Hotelling, Pillai, Roy's gcr):

- identical for factors with two levels
- for more than two levels: Wilks, Hotelling, Pillai pool dimensions, Roy considers first dimension / contrast
- Wilks: likelihood statistics for equal population mean vectors vs. group mean vectors in the sample Hotelling: pooled ratio of effect to error variance Pillai: pooled effect variances
- Wilks, Hotelling, Roy: most robust if strongest contrib. fr. first contr.
- Pillai more robust (against small sample sizes, inhomog. of var.)
- \rightarrow use Wilks unless there is reason to use Pillai PAGE 54

strategies for assessing DVs:

- if DVs are uncorrelated UniANOVA is acceptable
- if DVs are correlated, use stepdown analysis (analogue to sequential regression) in combination with UniANOVA and evaluate possible pattern: (1) sign. in UniANOVA, nonsign. stepdown \rightarrow variance already explained by higher-order DVs (2) nonsign. in UniANOVA, sign. stepdown \rightarrow DV takes on «importance» from higher-order DVs PAGE 55

Questions? Comments?

 special application of the MANOVA with several DVs measured on the same scale: (1) same DV over time (repeated measures), (2) several DVs (e.g., WISC-subtests) at the same time, (3) several DVs over time (doubly multivar. design) or (4) compare profiles of two groups (POMS, WISC, neuropsych. battery)

typical research questions:

- testing parallelism of profiles through interaction (group × test)
- overall group performance differences
- flatness of profiles (lack of diff. between subtests)
- «typical» profiles for different groups (mean prof.)

assumptions and limitations:

- N per factor level should be ≥ number of levels
- robust against unequal cell sizes and non-normal.
- for equal cell sizes, homogeneity of variancecovariance matr. doesn't have to be evaluated
- extreme sensitivity to outliers
- non-linearity \rightarrow loss of power for parallelism-test

fundamental equations and calculation:

D =	[1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3,	785674656435476	10, 9, 10, 10, 8, 4, 5, 6, 5, 1, 3, 2, 1, 3,	6,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	578894367525543	· · · · · · · · · · · · · · · · · · ·		
GM = M1 = M2 = M3 =	= mea = mea = mea = mea	an([an([an([an([D(:, D(D(D(D(D(D(, , ,	1) = 1) = 1) =	== 1, == 2, == 3,	2:5), 2:5), 2:5), 2:5),	1 1 1 1

% calculate differences among tests / ratings DD = [D(:, 1), -diff(D(:, 2:5), 1, 2)] DGM = mean(DD(:, 2:4), 1) DM1 = mean(DD(DD(:, 1) == 1, 2:4), 1) DM2 = mean(DD(DD(:, 1) == 2, 2:4), 1) DM3 = mean(DD(DD(:, 1) == 3, 2:4), 1)

fundamental equations and calculation (cont.):

Swg = (DD(:, 2:4) - [repmat(DM1, 5, 1); repmat(DM2, 5, 1); repmat(DM3, 5, 1)])' * ... (DD(:, 2:4) - [repmat(DM1, 5, 1); repmat(DM2, 5, 1); repmat(DM3, 5, 1)]) Sbg = 5 * ((DM1 - DGM)' * (DM1 - DGM) + (DM2 - DGM)' * (DM2 - DGM) + ... (DM3 - DGM)' * (DM3 - DGM))

```
 LP = det(Swg) / det(Swg + Sbg) 
% it is not clear to me why the s in (1/s) is set to 2; however, 
% the F value is numerically identical to the SAS output (p. 367) 
FP = (1 - LP ^ (1/2)) / (LP ^ (1/2)) * (20 / 6) 
SP = 1 - fcdf(FP, 6, 20) 
etapP = 1 - LP ^ (1/2)
```

NB: *parallelism* is the H0, profiles are parallel if there are no group differences in profile

T2F = 15 * DGM * inv(Swg) * DGM' FF = (15 - 3 - 4 + 2) / (4 - 1) * T2F SF = 1 - fcdf(FF, 3, 10) LF = 1 / (1 + T2F) etapF = 1 - LF ^ (1 / 1) NB: **flatness** is also the H0, profiles are flat if there are no differences between scores within the profile

important issues:

- univariate repeated-measure analyses require sphericity (if more than two levels; for longitudinal studies, sphericity is unlikely; the assumption would be similar correl. between 5 to 6 vs. 5 to 10 years of age)
- univariate analyses: sphericity-correction using Greenhouse-Geisser, Huynh-Feldt
- multivariate analyses require larger samples
- best alternative: trend analysis (polynomial)
- linear discrim. analysis: classification of profiles PAGE 62

Questions? Comments?

Summary

- variable types and statistical methods
- statistical tests: assumptions and procedures
- ANOVA: background and calculation (Excel)
- ANOVA: more backgr., typical designs, contrasts
- assumptions for using parametric tests (refresher)
- ANCOVA
- MANOVA and MANCOVA
- MANOVA: profile analysis

Literature

Tabachnik, B. G., Fidell, L. S. (2013). *Using Multivariate Statistics* (6th ed.). New York, NY: Pearson. (Ch. 3, 6, 7 & 8)

Field, A. (2017). *Discovering Statistics Using IBM SPSS Statistics*. London, UK: Sage Publications Ltd.

Thank you for your interest and your attention!

UNIVERSITY OF BERGEN

