Analysis of Variance

Sebastian Jentschke

Agenda

- variable types and statistical methods
- statistical tests: assumptions and procedures
- ANOVA: background and calculation (Excel)
- ANOVA: more backgr., typical designs, contrasts
- assumptions for using parametric tests (refresher)
- ANCOVA
- MANOVA and MANCOVA
- MANOVA: profile analysis

Categorical vs. continuous predct.

- categorical predictors (factors) contain a limited number of steps (e.g., male - female, experimentally manipulated or not)
- continuous have a (theoretically unlimited) number of steps (e.g., body height, weight, IQ)
- ANOVA (this session) is for categorical predictors, Regression analysis (next weeks session) is for continuous predictors

Categorical vs. continuous vars.

		Dependent variable	
	Categorical	Continuous	
Independent variable	Categorical	X^{2} test (chi-squared)	
Continuous	L-test ANOVA		

Relation vs. difference hypotheses

- relation hypotheses explore whether there is a relation between one (or more) independent and a dependent variable
- difference hypotheses explore whether there is a difference between the steps of one (or more) independent and a dependent variable
- the distinction between IV and DV is blurred for relation hypotheses
\rightarrow causality can only be inferred if the independent variable was experimentally manipulated

Within vs. between subject vars.

- within-subject variables are measures acquired from the same person (e.g., administering the same test before and after treatment; subtests / dimension of an IQ / personality test; EEG data) \rightarrow idea that the "performance" or "properties" that characterize the person stay the same
- between-subjects variables are variables that distinguish between individuals (e.g, male-female)

Predictor and dependent variables

- independent = experimental = predictor variable, is a variable that is being experimentally manipulated in order to observe an effect
- dependent = outcome variable is the variable that is affected by the experimental manipulation

Questions?
Comments?

Assumptions of statistical tests

- population vs. sample \approx parameter vs. statistic
- population: large group you want to make assumptions about vs. sample: smaller group that you measure / observe (assuming to represent the population)
- parameter: «real» value in the population (e.g., population mean) vs. statistic: (e.g., sample average)
- central limit theorem

Assumptions of statistical tests

- Standard error of mean - the more samples are taken from a population, the more exact the mean in the population can be described \rightarrow imagine a series of dice throws (try it out)
- $s_{\bar{x}}=s / \sqrt{n}$

Assumptions of statistical tests

- H_{0} - Null hypothesis (e.g., there is no group difference, the treatment doesn't work)
- H_{1} - Alternative hypothesis
- Reject the H_{0} (accept / retain H_{1}): observed difference is larger than exected by chance
- α-level (outer ends of the normal distribution)

Assumptions of statistical tests

- Distributions
- z: position relative to mean in SDs $(y-\eta) / \sigma$
- t: like z, but corrects for small samples
- F: $\frac{s_{1}^{2} / \sigma_{1}^{2}}{s_{2}^{2} / \sigma_{2}^{2}} \sim F_{n, w n}$ compares two variances (e.g., explained vs. unexplained)

Assumptions of statistical tests

F ratio (or score)

Assumptions of statistical tests

- Type I error (False positive): one rejects the null hypothesis when it is true (α-probability).
- Type II error (False negative): one rejects the alternative hypothesis (fails to reject the null hypothesis) when the alternative hypothesis is true (β-probability).
- Usually deal with Type I errors; Type II errors are esp. important when determining sample size

Questions?
Comments?

Analysis of Variance

- compare two (or more) means to see whether they significantly differ from another
- evaluates the differences among means relative to the dispersion of the sampling distribution

$$
H_{0}: \bar{Y}_{1}=\dot{Y}_{2}=\ldots=\bar{Y}_{k}\left(\mu_{1}=\mu_{2}=\ldots=\mu_{k}\right)
$$

Analysis of variance

- WHAT WOULD BE THE BEST PREDICTOR VARIABLE FOR AN INDIVIDUAL MEASURE (E.G. BODY HEIGHT) IN A GROUP?
- WHY?
- HOW WOULD THIS CHANGE WITH INTRODUCING A FACTOR (E.G. SEX)?

Analysis of variance

- $y=b_{0}+b_{1} \cdot x_{1}+\ldots+b_{n} \cdot x_{n}+e$ $Y=B X+E$
$\mathrm{Y}, \mathrm{y}=$ dependent variable
$\mathrm{X},\left[\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{n}}\right]=$ predictor variable $[0,1]$
$B,\left[b_{0} \ldots b_{n}\right]=$ predictor weights
[group mean - sample mean]
E, [e] = error term

Analysis of variance

check out Analysis of Variance - Step-bystep.ods on MittUIB for details

- calculate group and sample mean (all groups)
- SS_{R} - calculate the difference between each individual value and its group mean and square it (SS of the residuals)
- SS_{M} - calculate the difference between group and sample mean, square it and multiply it by the number of group members (SS of the model)

Analysis of variance

- MSS = SS / df
(sum of squares / degrees of freedom)
- $\mathrm{df}_{\mathrm{R}}=15$ (observations) - 3 (groups) $\mathrm{df}_{\mathrm{M}}=3$ (groups) -1
- $\mathrm{MSS}_{\mathrm{R}}=23,60 / 12=1,97$
$\mathrm{MSS}_{\mathrm{M}}=20,13 / 2=10,07$
- $F_{(2,12)}=10,07 / 1,97=5,12$

Analysis of variance

Questions?
Comments?

Analysis of Variance

- based upon two estimates / components of variance: (1) explained by differences in group means (effect) vs. (2) differences between group mean and individual score (error)

$$
Y_{i j}-G M \quad=\left(Y_{i j}-\bar{Y}_{j}\right)+\left(\bar{Y}_{j}-G M\right)
$$

$$
\sum_{i} \sum_{j}\left(Y_{i j}-G M\right)^{2}=\sum_{i} \sum_{j}\left(Y_{i j}-\bar{Y}_{j}\right)^{2}+n \sum_{j}\left(\bar{Y}_{j}-G M\right)^{2}
$$

$$
\mathrm{SS}_{\text {total }} \quad=\mathrm{SS}_{\mathrm{wg}} \quad+\mathrm{SS}_{\mathrm{bg}}\left(\mathrm{df}_{\text {total }}=\mathrm{df}_{\mathrm{wg}}+\mathrm{df}_{\mathrm{bg}}\right)
$$

Analysis of Variance

- $\mathrm{df}_{\text {total }}=\mathrm{N}-1$
$\mathrm{df}_{\mathrm{wg}}=\mathrm{N}-\mathrm{k}$
$\mathrm{df}_{\mathrm{bg}}=\mathrm{k}-1$
 $S_{S_{(K)}}$ due to subjects within the group)

Analysis of variance

- one-way between-subjects ANOVA:

Treatment		
K_{1}	K_{2}	K_{3}
S_{1}	S_{4}	S_{7}
S_{2}	S_{5}	S_{8}
S_{3}	S_{6}	S_{9}

$$
\mathrm{df}_{\mathrm{Sf}=k-1,}^{\mathrm{SS}_{K}} \frac{\mathrm{SS}_{S(K)}}{N-k} \quad F=\frac{\mathrm{MS}_{K}}{\mathrm{MS}_{S(K)}} \quad \mathrm{df}=(k-1), N-k
$$

- factorial between-subjects ANOVA

	Teaching Techniques			
	T_{1}		T_{2}	T_{3}
Gender		S_{1}	S_{5}	S_{9}
		S_{2}	S_{6}	S_{10}
	G_{2}	S_{3}	S_{7}	S_{11}
	S_{4}	S_{8}	S_{12}	

Analysis of variance

- one-way within-subject ANOVA

		Treatment		
	K_{1}			
K_{2}		K_{3}		
Subjects	S_{1}	S_{1}	S_{1}	S_{1}
	S_{2}	S_{2}	S_{2}	S_{2}
	S_{3}	S_{3}	S_{3}	S_{3}

once individual differences
are subtracted, the error

df $=k-1, \quad s-1, \quad$| MS_{K} |
| :--- |
| $\mathrm{MS}_{S K}$ |$\quad \mathrm{df}=(k-1)(k-1)(s-1)$

- one-way matched-randomized ANOVA

	Treatment					
	A_{1}			A_{2}		A_{3}
Blocks	B_{1}	S_{1}	S_{2}	S_{3}		
	B_{2}	S_{4}	S_{5}	S_{6}		
	B_{3}	S_{7}	S_{8}	S_{9}		

subjects are matched on variable(s) highly related to the DV; per block b are as many subjects as factor steps k; should be more sens. than between-subject des.

Analysis of variance

- mixed between-within-subjects ANOVA

total SS is divided into a component attributable to the between-subjects part of the design (groups), another to the within-subject part (trials); each component is further partitioned into effects and errors; for all between-subjects, there is a single error term consisting of variance among subjects relative to each combination of between-subject IVs

Analysis of variance

- factorial within-subject ANOVA

Analysis of Variance

design complexity:

- in between-subject designs subjects are nested to one level of IV or one combination of IVs
(example: one teaching methods assigned to a classroom; children can't be randomly assigned)
- latin-square designs: to counter the effects of increasing experience, time of day, etc.
(a) Nested Designs

Teaching Techniques

T_{1}	T_{2}	T_{3}
Classroom 1	Classroom 2	Classroom 3
Classroom 4	Classroom 5	Classroom 6
Classroom 7	Classroom 8	Classroom 9

		Order		
	1		2	3
Subjects	S_{1}	A_{2}	A_{1}	A_{3}
	S_{2}	A_{1}	A_{3}	A_{2}
	S_{3}	A_{3}	A_{2}	A_{1}

Analysis of Variance

contrasts:

- with factors with more than two levels or interactions \rightarrow ambiguity; overall sign. but which difference «caused» the effect
- use contrasts to further investigate the difference
- dfs as «non-renewable resource»
\rightarrow test most interesting comparisons at conventional α-levels
\rightarrow otherwise use Bonferroni-correct.
\rightarrow post-hoc compar. using Scheffé-adjust. $F^{\prime}=(k-1) \cdot F_{\text {crit }}\left(\right.$ with $\left.k-1, d f_{\text {err }}\right)$
- unequal N and non-orthogonality

	w_{1}	w_{2}	w_{3}
Comparison 1	1	-1	0
Comparison 2	$1 / 2$	$1 / 2$	-1
Comparison 3	1	0	-1

Analysis of Variance

fixed and random effects:

- fixed: selected levels of the IV
- random: sampling random levels of an (continouos) IV (e.g, word familiarity)

parameter estimates:

- sample means are unbiased estimators of population means but with a degree of uncertainty (SEM \rightarrow confidence intervals)

Analysis of Variance

effect size measures:

indicate to which degree IV(s) and DV are related (variance in the DV that is predictable from IVs) $\eta^{2}=S S_{\text {effect }} / S S_{\text {total }}$
$\eta_{\mathrm{p}}^{2}=\mathrm{SS}_{\text {effect }} /\left(\mathrm{SS}_{\text {effect }}+\mathrm{SS}_{\text {error }}\right)$
$\omega^{2} \xlongequal{=}\left(\mathrm{SS}_{\text {effect }}-\mathrm{df}_{\text {effect }} \cdot \mathrm{MS}_{\text {error }}\right) /\left(\mathrm{SS}_{\text {total }}+\mathrm{MS}_{\text {error }}\right)$
η^{2} is flawed: (1) depends on number and sign. of other IVs in the design - proportion explained by any one variable will automatically decrease (\rightarrow partial η^{2}); (2) describes systematic / explained variance in a sample, but overestimates it in the population (esp. with small $\mathrm{Ns} \rightarrow \omega^{2}$)
see: https://daniellakens.blogspot.com/2015/06/why-you-should-use-omega-squared.html

Questions?
Comments?

Parametric vs. non-parametric

- conditions for using parametric tests (such as correlation, regression, t-test, ANOVA)
- if one of these conditions is violated, nonparametric tests have to be used
- robustness against a violation of assumptions (most parametric tests are relatively robust against deviation from normality)

Parametric vs. non-parametric

- linearity (although the ANOVA is more robust against violations of this assumption
 than a regress.)

Parametric vs. non-parametric

- homogeneity of variance $=$ homoscedasticity

Parametric vs. non-parametric

- normality and possible causes for normality violations

Data too peaked in middle

Skewed data

Normal Q-Q Plot

Normal Q-Q Plot

Checking assumptions

- linearity (for continuous predictors [ANCOVA]; scatterplot for predictor and dependent variable)
- normality
- explorative data analysis: Box-Whisker plots for different factor stages, Normality plots
- K-S-test for normality (within factor-steps)
- homogeneity of variances usually within tests or post-hoc (predictors vs. residuals)

Checking for outliers

- univariate - SPSS FREQUENCIES (box plots; for $\mathrm{N}<1000$ $\rightarrow p=.001 \rightarrow z= \pm 3.3$; only for DV and IVs that are used as covariates)
- multivariate: SPSS REGRESSION (Save \rightarrow Distances \rightarrow Mahalanobis; calculate "SIG.CHISQ(MAH_1,3)" and exclude p < .001; only for DV and IVs as covariates)
- IQR = Q3 - Q1 (sort your variable, take 25\% position [Q1] and 75% position [Q3])
Outlier: Q1 - IQR * 1.5 [liberal] / 3.0 [strict] Q3 + IQR * 1.5 [liberal] / 3.0 [strict]

Questions?
Comments?

ANCOVA

- extension of the ANOVA where main effects and interactions of IVs are adjusted for differences associated with one or more CV
- major purposes:
(1) increase the sensitivity for the main effects by reducing the error term (reduce «undesirable» variance);
(2) adjust the DV as if all participants were the same on the CV (statistical «matching» samples);
(3) assess a DV after adjustment for other DVs (treated as CVs; autom. in MANOVA)
- variance partitioned: between groups (IVs), within group (CV) regression of CVs \rightarrow DV, ANOVA of the IVs on the residuals

ANCOVA

research questions:

- explore main effects and interactions of Ivs, compare them using contrasts or trend analysis (same as ANOVA; while holding constant prior difference on a CV)
- evaluate the effect of CVs by assessing their expained variance
- evaluate the effect size of the IV after adj. for CVs

ANCOVA

theoretical limitations:

- choose a small number of CVs (highly correlated with DV but not correlated with other Cvs)
- CVs must be independent of treatment (gathered before)
- adjusting mean DV score doesn't represent a «real-world»-situation

ANCOVA

practical issues:

- reliability of CVs $\left(r_{x x}>.8\right)$
- sufficient sample size per cell (level of IVs)
- absence of multicollinearity and singularity (SMC > .5~ redundant)
- linearity between CVs and between CVs and DV
- homogeneity of regression

ANCOVA

	Groups					
	Treatment 1		Treatment 2		Control	
	Pre	Post	Pre	Post	Pre	Post
	85	100	86	92	90	95
	80	98	82	99	87	80
	92	105	95	108	78	82
Sums	257	303	263	299	255	257

fundamental equations:

```
D = [1, 85, 100; ...
        1, 80, 98
        1, 92, 105; ....
        2, 86, 92; ....
        2, 82, 99
        2, 95, 108
        3, 90, 95; ...
        3, 90, 95; ...
        3, 78, 82;
    S1 = sum(D(D(:, 1) == 1, 2:3))
    S2 = sum(D(D):,
        1) == 2, 2:3))
S3 = sum(DCD(:',
            1) == 3, 2:3))
SB =[S1(1), S2(1), S3(1)]
```

```
SSbg = sum(SA .^ 2) / 3 - sum(SA) .^ 2 / 9
```

SSbg = sum(SA .^ 2) / 3 - sum(SA) .^ 2 / 9
SSwg = sum(D(:, 3).^ 2) - sum(SA .^ 2) / 3
SSwg = sum(D(:, 3).^ 2) - sum(SA .^ 2) / 3
SSbgx = sum(SB .^ 2) / 3 - sum(SB) .^ 2 / 9
SSbgx = sum(SB .^ 2) / 3 - sum(SB) .^ 2 / 9
SSwgx = sum(D(:, 2) .^ 2) - sum(SB .^ 2) / 3
SSwgx = sum(D(:, 2) .^ 2) - sum(SB .^ 2) / 3
SPbg = SA * SB' / 3 - sum(SA) * sum(SB) / 9
SPbg = SA * SB' / 3 - sum(SA) * sum(SB) / 9
SPwg = D(:, 2)' * D(:, 3) - SA * SB' / 3
SPwg = D(:, 2)' * D(:, 3) - SA * SB' / 3
SStbg = SSbg - ((SPbg + SPwg) ^ 2 / ...
SStbg = SSbg - ((SPbg + SPwg) ^ 2 / ...
SStwg = SSwg - SPwg ^ 2 / SSwgx
SStwg = SSwg - SPwg ^ 2 / SSwgx
Fcv = (SStbg / 2) / (SStwg / 5)
Fcv = (SStbg / 2) / (SStwg / 5)
1 - fcdf(Fcv, 2, 5)
1 - fcdf(Fcv, 2, 5)
Fiv = (SSbg / 2) / (SSwg / 6)
Fiv = (SSbg / 2) / (SSwg / 6)
1 - fcdf(Fiv, 2, 6)
1 - fcdf(Fiv, 2, 6)
etap_iv = SStbg / (SStbg + SStwg)
etap_iv = SStbg / (SStbg + SStwg)
(SSbgx + SSwgx) - SPwg ^ 2 / SSwgx)

```
(SSbgx + SSwgx) - SPwg ^ 2 / SSwgx)
```


ANCOVA

important issues:

- optimal set of CVs - weighed against loss in dfs, «power loss» if CVs are substantially correlated
- CVs are predictors in a sequential regr. perspect. (but multiple CVs er entered at once - std. regr.)
- testing for homogeneity of regression

MANOVA
POST BY TREATMNT(1, 3) WITH PRE
/PRINT=SIGNIF(BRIEF)
/ANALYSIS = POST
/METHOD=SEQUENTIAL

ANCOVA

design complexity:

- a CV that is measured only once does not provide adjustment for within-subject effects
- adjustment for interactions of $\mathrm{CV}(\mathrm{s})$ and $\mathrm{IV}(\mathrm{s})$ no adjustm. (SPSS MANOVA), adj. (SPSS GLM)
- different CVs for the levels of IVs (imposs. in SPSS)

ANCOVA

design alternatives:

- use differences (change scores) instead the pretest as CV or implement it as within-IV
- problem of change scores and floor or ceiling eff.
- problems with insufficient reliability
- blocking (dichotomize a CV: low, medium, high) or randomized blocks (k particip. per block)
\rightarrow does not need linearity, even works for curvilin.

Questions?
Comments?

MANOVA and MANCOVA

- generalization of the ANOVA for the combination of several DVs statistically identical to linear discriminant analysis (MANOVA emphasizes whether multivar. differences are larger than chance; LDA emphasizes prediction, reliable separating groups by a multivariate combination / pattern)
- different linear combinations of DVs are formed for all main effects and interactions
- protection against inflation of type-l-error
- may reveal difference that don't show in UniANOVA
- avoids sphericity violations in univ. rep.-meas. ANOVA
- MANCOVA: simult. correcting for differences in covariates

MANOVA and MANCOVA

assumptions:

- multivariate normality
- absence of outliers (uni- and multivariate)
- homegeneity of variance-covariance matrices
- linearity
- homogeneity of regression (for MANCOVA)
- reliability of covariates
- absence of multicollinearity and singularity

MANOVA and MANCOVA

fundamental equations and calculation:

$\mathrm{GM}=\operatorname{mean}(\mathrm{DL}(:, 3: 4))$;
$\mathrm{T}=\operatorname{zeros}(2,2) ; \%$ treatment D = zeros(2, 2); \% disability
DT $=$ zeros $(2,2)$; \% interaction

PAGE 52

```
for ZT = 0:1
    T = T + (mean(DL(DL(:, 1) == ZT, 3:4)) - GM)' *
                        (mean(DL(DL(:, 1) == ZT, 3:4)) - GM) * \dot{nnz}(DL(:, 1) == ZT);
end
for ZD = 1:3
    D = D + (mean(DL(DL (:, 2) == ZD, 3:4)) - GM)' * ...
        (mean(DL(DL(:, 2) == ZD, 3:4)) - GM) * nnz(DL(:, 2) == ZD);
end
for ZI = 1:6
    DT = DT + (mean(DL(DL(:, 1) * 3 + DL(:, 2) == ZI, 3:4)) - GM)' *...
                            (mean(DL(DL(:, 1) * 3 + DL(:, 2) == ZI, 3:4)) -GM) * ...
                            nnz(DL(:, 1) * 3 + DL(:, 2) == ZI);
end
E = (DL(:, 3:4) - GM)'*(DL(:, 3:4) - GM) - D - T - DT
% determininants (det) as the matrix analogue of variance
LT = det(E) / det(T + E)
LD = det(E) / det(D + E)
LDT = det(E) / det(DT + E)
FT = ((1 - LT ^ (1/1)) / LT ^ (1/1)) * (11 / 2)
FD = ((1 - LD ^ (1/2)) / LD ^ (1/2) ) * (22 / 4)
FDT = ((1 - LDT ^ (1/2)) / LDT ^ (1/2)) * (22 / 4)
ST = 1 - fcdf(FT, 2, 11)
SD = 1 - fcdf(FD, 4, 22)
SDT = 1 - fcdf(FDT, 4, 22)
```


MANOVA and MANCOVA

applicability:

- MANOVA works best with highly negatively correlated DVs and acceptably with moderately (pos. or neg.) correlated Dvs; wasteful if very highly pos. related (no improved prediction) or uncorrelated (no advant. over ANOVA)

MANOVA and MANCOVA

statistical inference (Wilks $\boldsymbol{\Lambda}$, Hotelling, Pillai, Roy’s gcr):

- identical for factors with two levels
- for more than two levels: Wilks, Hotelling, Pillai pool dimensions, Roy considers first dimension / contrast
- Wilks: likelihood statistics for equal population mean vectors vs. group mean vectors in the sample Hotelling: pooled ratio of effect to error variance Pillai: pooled effect variances
- Wilks, Hotelling, Roy: most robust if strongest contrib. fr. first contr.
- Pillai more robust (against small sample sizes, inhomog. of var.)
- \rightarrow use Wilks unless there is reason to use Pillai

MANOVA and MANCOVA

strategies for assessing DVs:

- if DVs are uncorrelated UniANOVA is acceptable
- if DVs are correlated, use stepdown analysis (analogue to sequential regression) in combination with UniANOVA and evaluate possible pattern:
(1) sign. in UniANOVA, nonsign. stepdown \rightarrow variance already explained by higher-order DVs
(2) nonsign. in UniANOVA, sign. stepdown \rightarrow

DV takes on «importance» from higher-order DVs

Questions?
Comments?

MANOVA: Profile analysis

- special application of the MANOVA with several DVs measured on the same scale: (1) same DV over time (repeated measures), (2) several DVs (e.g., WISC-subtests) at the same time, (3) several DVs over time (doubly multivar. design) or (4) compare profiles of two groups (POMS, WISC, neuropsych. battery)

MANOVA: Profile analysis

typical research questions:

- testing parallelism of profiles through interaction (group \times test)
- overall group performance differences
- flatness of profiles (lack of diff. between subtests)
- «typical» profiles for different groups (mean prof.)

MANOVA: Profile analysis

assumptions and limitations:

- N per factor level should be \geq number of levels
- robust against unequal cell sizes and non-normal.
- for equal cell sizes, homogeneity of variancecovariance matr. doesn't have to be evaluated
- extreme sensitivity to outliers
- non-linearity \rightarrow loss of power for parallelism-test

MANOVA: Profile analysis

fundamental equations and calculation:

$\mathrm{GM}=\operatorname{mean}(\mathrm{D}(:$,
$M 1=\operatorname{mean}(D(D(:, 1)==1,2: 5), 1)$
$M 2=\operatorname{mean}(D(D(:, 1)==2,2: 5), 1)$
$M 3=\operatorname{mean}(D(D(:, 1)==3,2: 5), 1)$
figure; hold on; x7im([0.5 4.5]);

$\left.\begin{array}{l}\text { plot }\left(\left[\begin{array}{lll}1 & 2 & 3\end{array}\right] \text {, M1, }\right. \\ \text { plot }\left(\begin{array}{lll}1 & 2 & 3\end{array}\right]\end{array}\right]$, M2,	

plot([1 2234$]$, M3', 'k*-')

SSwg = 4 * sum((mean(D(:, 2:5), 2) -
[repmat(mean (M1, 2), 5, 1);
repmat (mean (M2, 2), 5, 1); \cdots
repmat(mean(M3, 2), 5, 1)]) .^ 2)
$\mathrm{Fg}=(\mathrm{SSbg} / 2) /(\mathrm{SSwg} / 12)$
$\mathrm{sg}=1-\mathrm{fcdf}(\mathrm{Fg}, 2,12)$
\% calculate differences among tests / ratings
DD = $[\mathrm{D}(:, 1),-\operatorname{diff}(\mathrm{D}(:, 2: 5), 1,2)]$
DGM $=$ mean(DD $:$,
$2: 4), 1)$
DM1 $=\operatorname{mean}(\operatorname{DD}(D D(:, 1)==1,2: 4), 1)$
DM2 $=\operatorname{mean}(\operatorname{DD}(D D(:, 1)==2,2: 4), 1)$
DM3 $=$ mean $(\operatorname{DD}(\operatorname{DD}(:, 1)==3,2: 4), 1)$

MANOVA: Profile analysis

fundamental equations and calculation (cont.):

```
Swg = (DD(:, 2:4) - [repmat(DM1, 5, 1); repmat(DM2, 5, 1); repmat(DM3, 5, 1)])' *
        (DD(:, 2:4) - [repmat(DM1, 5, 1); repmat(DM2, 5, 1); repmat(DM3, 5, 1)])
Sbg = 5 * ((DM1 - DGM)'* (DM1 - DGM) + (DM2 - DGM)' * (DM2 - DGM) + ...
        (DM3 - DGM)' * (DM3 - DGM))
LP = det(Swg) / det(Swg + Sbg)
% it is not clear to me why the s in (1/s) is set to 2; however,
% the F value is numerically identical to the SAS output (p. 367)
FP = (1 - LP ^ (1/2)) / (LP ^ (1/2)) * (20 / 6)
SP = 1 - fcdf(FP, 6, 20)
etapP = 1 - LP ^ (1/2)
T2F = 15 * DGM * inv(Swg) * DGM'
FF = (15-3-4 + 2)/(4-1) * T2F
SF = 1 - fcdf(FF, 3, 10)
LF = 1/(1 + T2F)
etapF = 1 - LF ^ (1 / 1)
```

NB: parallelism is the HO, profiles are parallel if there are no group differences in profile

NB: flatness is also the HO, profiles are flat if there are no differences between scores within the profile

MANOVA: Profile analysis

important issues:

- univariate repeated-measure analyses require sphericity (if more than two levels; for longitudinal studies, sphericity is unlikely; the assumption would be similar correl. between 5 to 6 vs. 5 to 10 years of age)
- univariate analyses: sphericity-correction using Greenhouse-Geisser, Huynh-Feldt
- multivariate analyses require larger samples
- best alternative: trend analysis (polynomial)
- linear discrim. analysis: classification of profiles

PAGE 62

Questions?
Comments?

Summary

- variable types and statistical methods
- statistical tests: assumptions and procedures
- ANOVA: background and calculation (Excel)
- ANOVA: more backgr., typical designs, contrasts
- assumptions for using parametric tests (refresher)
- ANCOVA
- MANOVA and MANCOVA
- MANOVA: profile analysis

Literature

Tabachnik, B. G., Fidell, L. S. (2013). Using Multivariate Statistics (6th ed.). New York, NY: Pearson. (Ch. 3, 6, 7 \& 8)
Field, A. (2017). Discovering Statistics Using IBM SPSS Statistics. London, UK: Sage Publications Ltd.

Thank you for your interest and your attention!

UNIVERSITY OF BERGEN

