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Agenda
● variable types and statistical methods
● statistical tests: assumptions and procedures
● ANOVA: background and calculation (Excel)
● ANOVA: more backgr., typical designs, contrasts
● assumptions for using parametric tests (refresher)
● ANCOVA
● MANOVA and MANCOVA
● MANOVA: profile analysis
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Categorical vs. continuous predct.
• categorical predictors (factors) contain a limited 

number of steps (e.g., male – female, 
experimentally manipulated or not)

• continuous have a (theoretically unlimited) 
number of steps (e.g., body height, weight, IQ)

• ANOVA (this session) is for categorical predictors, 
Regression analysis (next weeks session) is for 
continuous predictors
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Categorical vs. continuous vars.
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Dependent variable

Categorical Continuous

Independent
variable

Categorical Χ² test
(chi-squared)

t-test
ANOVA

Continuous
Logistic 

regression

Correlation
Linear 

regression



• relation hypotheses explore whether there is a relation 
between one (or more) independent and a dependent 
variable

• difference hypotheses explore whether there is a 
difference between the steps of one (or more) independent 
and a dependent variable

• the distinction between IV and DV is blurred for relation 
hypotheses
→ causality can only be inferred if the independent variable 
was experimentally manipulated

Relation vs. difference hypotheses
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Within vs. between subject vars.
• within-subject variables are measures acquired 

from the same person (e.g., administering the 
same test before and after treatment; subtests / 
dimension of an IQ / personality test; EEG data) 
→ idea that the “performance” or “properties” that 
characterize the person stay the same

• between-subjects variables are variables that 
distinguish between individuals (e.g, male-female)
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● independent = experimental = predictor variable, 
is a variable that is being experimentally manipu-
lated in order to observe an effect

● dependent = outcome variable is the variable that 
is affected by the experimental manipulation

Predictor and dependent variables
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Questions?
Comments?



Assumptions of statistical tests
• population vs. sample ≈ parameter vs. statistic

– population: large group you want to make 
assumptions about vs. sample: smaller group that 
you measure / observe (assuming to represent the 
population)

– parameter: «real» value in the population (e.g., 
population mean) vs. statistic: (e.g., sample 
average)

• central limit theorem
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Assumptions of statistical tests
● Standard error of mean – the more samples are 

taken from a population, the more exact the 
mean in the population can be described
→ imagine a series of dice throws (try it out)

● s
x
 = s / √n
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Assumptions of statistical tests
● H

0
 – Null hypothesis (e.g., there is no group 

difference, the treatment doesn’t work)
● H

1
 – Alternative hypothesis

● Reject the H
0
 (accept / retain H

1
): observed 

difference is larger than exected by chance
● α-level (outer ends of the normal distribution)
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Assumptions of statistical tests
• Distributions

– z: position relative to
mean in SDs (y – η) / σ

– t: like z, but corrects for
small samples

– F:             compares two
variances (e.g., ex-
plained vs. unexplained)
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Assumptions of statistical tests
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Assumptions of statistical tests
● Type I error (False positive): one rejects the null 

hypothesis when it is true (α-probability).
● Type II error (False negative): one rejects the 

alternative hypothesis (fails to reject the null 
hypothesis) when the alternative hypothesis is 
true (β-probability).

● Usually deal with Type I errors; Type II errors are 
esp. important when determining sample size
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Questions?
Comments?



Analysis of Variance
● compare two (or more) means to see whether 

they significantly differ from another
● evaluates the differences among means relative 

to the dispersion of the sampling distribution
H

0
: Y

1
 = Y

2
 = ... = Y

k
 (μ

1
 = µ

2
 = ... = µ

k
)
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Analysis of variance
• WHAT WOULD BE THE BEST PREDICTOR 

VARIABLE FOR AN INDIVIDUAL MEASURE 
(E.G. BODY HEIGHT) IN A GROUP?

• WHY?
• HOW WOULD THIS CHANGE WITH 

INTRODUCING A FACTOR (E.G. SEX)?
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Analysis of variance
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• y = b
0
 + b

1
· x

1
 + … + b

n
· x

n
+ e

Y = BX + E
Y, y = dependent variable
X, [x

1
…x

n
] = predictor variable [0, 1]

B, [b0…bn] = predictor weights

    [group mean - sample mean]
E, [e] = error term



Analysis of variance
check out Analysis of Variance - Step-by-
step.ods on MittUIB for details
• calculate group and sample mean (all 

groups)
• SS

R
 – calculate the difference between 

each individual value and its group mean 
and square it (SS of the residuals)

• SS
M
 – calculate the difference between 

group and sample mean, square it and 
multiply it by the number of group 
members (SS of the model)
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Analysis of variance
• MSS = SS / df

(sum of squares / degrees of 
freedom)

• df
R
 = 15 (observations) – 3 (groups)

df
M
 = 3 (groups) – 1 

• MSS
R

= 23,60 / 12 = 01,97

MSS
M

= 20,13 / 02 = 10,07

• F
(2,12)

 = 10,07 / 1,97 = 05,12
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Analysis of variance
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3,89

5,12



Questions?
Comments?



Analysis of Variance
● based upon two estimates / components of 

variance: (1) explained by differences in group 
means (effect) vs. (2) differences between group 
mean and individual score (error)
Y

ij
 – GM       = (Y

ij
 – Y

j
)   +  (Y

j
 – GM)

SS
total

           = SS
wg

         + SS
bg  

(df
total

 = df
wg 

+ df
bg

)
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∑
i
∑

j

(Y ij−GM )
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i
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j
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+n∑

j

(Ȳ j –GM )
2



Analysis of Variance
● df

total
 = N – 1

df
wg 

  = N – k 

df
bg  

  = k – 1 

● SS
total

 = SS
K
 + SS

S(K)
 (SS

K
 due to the k groups; 

SS
S(K)

 due to subjects within the group)
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Analysis of variance
• one-way between-subjects ANOVA:

• factorial between-subjects ANOVA

UNIVERSITY OF BERGEN

PAGE 25



Analysis of variance
• one-way within-subject ANOVA

• one-way matched-randomized ANOVA

UNIVERSITY OF BERGEN

PAGE 26

once individual differences
are subtracted, the error
term is usually smaller than
in between-subject designs

subjects are matched on
variable(s) highly related to
the DV; per block b are as
many subjects as
factor steps k;
should be more sens.
than between-subject des.



Analysis of variance
• mixed between-within-subjects ANOVA

total SS is divided into a component attributable to the between-subjects part of 
the design (groups), another to the within-subject part (trials); each component 
is further partitioned into effects and errors; for all between-subjects, there is a 
single error term consisting of variance among subjects relative to each 
combination of between-subject IVs
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Analysis of variance
• factorial within-subject ANOVA
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Analysis of Variance
design complexity:

● in between-subject designs subjects are nested to one level of IV 
or one combination of IVs
(example: one teaching methods assigned to a classroom; 
children can’t be randomly assigned)

● latin-square designs: to counter the effects of increasing 
experience, time of day, etc.
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Analysis of Variance
contrasts:

● with factors with more than two levels or interactions → ambiguity; 
overall sign. but which difference «caused» the effect

● use contrasts to further investigate the difference
● dfs as «non-renewable resource»

→ test most interesting comparisons
at conventional α-levels
→ otherwise use Bonferroni-correct.
→ post-hoc compar. using Scheffé-adjust.
     F’ = (k – 1) · F

crit
 (with k-1, df

err
)

● unequal N and non-orthogonality
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Analysis of Variance
fixed and random effects:

● fixed: selected levels of the IV
● random: sampling random levels of an 

(continouos) IV (e.g, word familiarity)

parameter estimates:
● sample means are unbiased estimators of 

population means but with a degree of 
uncertainty (SEM → confidence intervals)
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Analysis of Variance
effect size measures:
indicate to which degree IV(s) and DV are related 
(variance in the DV that is predictable from IVs)
η² = SS

effect
 / SS

total

η²
p
 = SS

effect
 / (SS

effect
 + SS

error
)

ω² = (SS
effect

 – df
effect

 · MS
error

) / (SS
total

 + MS
error

)
η² is flawed: (1) depends on number and sign. of other IVs in the design - proportion 
explained by any one variable will automatically decrease (→ partial η²); (2) describes 
systematic / explained variance in a sample, but overestimates it in the population (esp. 
with small Ns → ω²)
see: https://daniellakens.blogspot.com/2015/06/why-you-should-use-omega-squared.html
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Questions?
Comments?



Parametric vs. non-parametric
• conditions for using parametric tests (such as 

correlation, regression, t-test, ANOVA)
• if one of these conditions is violated, non-

parametric tests have to be used
• robustness against a violation of assumptions 

(most parametric tests are relatively robust 
against deviation from normality)
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Parametric vs. non-parametric
• linearity

(although the
ANOVA is more
robust against
violations of
this assumption
than a regress.)
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Parametric vs. non-parametric
• homogeneity of

variance = 
homoscedasticity
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Parametric vs. non-parametric
• normality and

possible causes for
normality violations
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Checking assumptions
● linearity (for continuous predictors [ANCOVA]; 

scatterplot for predictor and dependent variable)
● normality

– explorative data analysis: Box-Whisker plots for 
different factor stages, Normality plots

– K-S-test for normality (within factor-steps)
● homogeneity of variances usually within tests or 

post-hoc (predictors vs. residuals)
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Checking for outliers
● univariate – SPSS FREQUENCIES (box plots; for N < 1000 

→ p = .001 → z = ±3.3; only for DV and IVs that are used 
as covariates)

● multivariate: SPSS REGRESSION (Save → Distances → 
Mahalanobis; calculate “SIG.CHISQ(MAH_1,3)” and 
exclude p < .001; only for DV and IVs as covariates)

● IQR = Q3 – Q1 (sort your variable, take 25% position [Q1] 
and 75% position [Q3])
Outlier: Q1 – IQR * 1.5 [liberal] / 3.0 [strict]

Q3 + IQR * 1.5 [liberal] / 3.0 [strict]
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Questions?
Comments?



ANCOVA
● extension of the ANOVA where main effects and interactions of IVs 

are adjusted for differences associated with one or more CV
● major purposes:

(1) increase the sensitivity for the main effects by reducing the error 
term (reduce «undesirable» variance);
(2) adjust the DV as if all participants were the same on the CV 
(statistical «matching» samples);
(3) assess a DV after adjustment for other DVs (treated as CVs; 
autom. in MANOVA)

● variance partitioned: between groups (IVs), within group (CV)
regression of CVs → DV, ANOVA of the IVs on the residuals
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ANCOVA
research questions:

● explore main effects and interactions of Ivs, 
compare them using contrasts or trend analysis 
(same as ANOVA; while holding constant prior 
difference on a CV)

● evaluate the effect of CVs by assessing their 
expained variance

● evaluate the effect size of the IV after adj. for CVs
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ANCOVA
theoretical limitations:

● choose a small number of CVs (highly correlated 
with DV but not correlated with other Cvs)

● CVs must be independent of treatment (gathered 
before)

● adjusting mean DV score doesn’t represent a 
«real-world»-situation
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ANCOVA
practical issues:

● reliability of CVs (r
XX

 > .8)
● sufficient sample size per cell (level of IVs)
● absence of multicollinearity and singularity (SMC > .5 ~ 

redundant)
● linearity between CVs and between CVs and DV
● homogeneity of regression
●
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ANCOVA

PAGE 45

D = [1,  85, 100; ...
     1,  80,  98; ...
     1,  92, 105; ...
     2,  86,  92; ...
     2,  82,  99; ...
     2,  95, 108; ...
     3,  90,  95; ...
     3,  87,  80; ...
     3,  78,  82]

S1 = sum(D(D(:, 1) == 1, 2:3))
S2 = sum(D(D(:, 1) == 2, 2:3))
S3 = sum(D(D(:, 1) == 3, 2:3))

SB = [S1(1), S2(1), S3(1)]
SA = [S1(2), S2(2), S3(2)]

SSbg  = sum(SA .^ 2) / 3  - sum(SA) .^ 2 / 9
SSwg  = sum(D(:, 3) .^ 2) - sum(SA .^ 2) / 3

SSbgx = sum(SB .^ 2) / 3  - sum(SB) .^ 2 / 9
SSwgx = sum(D(:, 2) .^ 2) - sum(SB .^ 2) / 3

SPbg  = SA * SB' / 3 - sum(SA) * sum(SB) / 9
SPwg  = D(:, 2)' * D(:, 3) - SA * SB' / 3

SStbg = SSbg - ((SPbg + SPwg) ^ 2 / ...
        (SSbgx + SSwgx) - SPwg ^ 2 / SSwgx)
SStwg = SSwg - SPwg ^ 2 / SSwgx

Fcv = (SStbg / 2) / (SStwg / 5)
1 - fcdf(Fcv, 2, 5)
Fiv = (SSbg  / 2) / (SSwg  / 6)
1 - fcdf(Fiv, 2, 6)
etap_iv  = SStbg / (SStbg + SStwg)

fundamental equations:



ANCOVA
important issues:

● optimal set of CVs – weighed against loss in dfs, 
«power loss» if CVs are substantially correlated

● CVs are predictors in a sequential regr. perspect. 
(but multiple CVs er entered at once – std. regr.)

● testing for homogeneity of regression
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ANCOVA
design complexity:

● a CV that is measured only once does not
provide adjustment for within-subject effects

● adjustment for interactions of CV(s) and IV(s)
no adjustm. (SPSS MANOVA), adj. (SPSS GLM)

● different CVs for the levels of IVs (imposs. in SPSS)
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ANCOVA
design alternatives:

● use differences (change scores) instead the 
pretest as CV or implement it as within-IV

● problem of change scores and floor or ceiling eff.
● problems with insufficient reliability
● blocking (dichotomize a CV: low, medium, high) 

or randomized blocks (k particip. per block)
→ does not need linearity, even works for curvilin.
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Questions?
Comments?



MANOVA and MANCOVA
● generalization of the ANOVA for the combination of several DVs – 

statistically identical to linear discriminant analysis (MANOVA 
emphasizes whether multivar. differences are larger than chance; 
LDA emphasizes prediction, reliable separating groups by a 
multivariate combination / pattern)

● different linear combinations of DVs are formed for all main effects 
and interactions

● protection against inflation of type-I-error
● may reveal difference that don’t show in UniANOVA
● avoids sphericity violations in univ. rep.-meas. ANOVA
● MANCOVA: simult. correcting for differences in covariates
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MANOVA and MANCOVA
assumptions:

● multivariate normality
● absence of outliers (uni- and multivariate)
● homegeneity of variance-covariance matrices
● linearity
● homogeneity of regression (for MANCOVA)
● reliability of covariates
● absence of multicollinearity and singularity
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MANOVA and MANCOVA
fundamental equations and calculation:
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DL = [1, 1, 115, 108, 110; ...
      1, 2, 100, 105, 115; ...
      1, 3,  89,  78,  99; ...
      1, 1,  98, 105, 102; ...
      1, 2, 105,  95,  98; ...
      1, 3, 100,  85, 102; ...
      1, 1, 107,  98, 100; ...
      1, 2,  95,  98, 100; ...
      1, 3,  90,  95, 100; ...
      0, 1,  90,  92, 108; ...
      0, 2,  70,  80, 100; ...
      0, 3,  65,  62, 101; ...
      0, 1,  85,  95, 115; ...
      0, 2,  85,  68,  99; ...
      0, 3,  80,  70,  95; ...
      0, 1,  80,  81,  95; ...
      0, 2,  78,  82, 105; ...
      0, 3,  72,  73, 102]

GM = mean(DL(:, 3:4));
T  = zeros(2, 2); % treatment
D  = zeros(2, 2); % disability
DT = zeros(2, 2); % interaction

for ZT = 0:1
   T = T + (mean(DL(DL(:, 1) == ZT, 3:4)) - GM)' * ... 
           (mean(DL(DL(:, 1) == ZT, 3:4)) - GM)  * nnz(DL(:, 1) == ZT);
end
for ZD = 1:3
   D = D + (mean(DL(DL(:, 2) == ZD, 3:4)) - GM)' * ...
           (mean(DL(DL(:, 2) == ZD, 3:4)) - GM)  * nnz(DL(:, 2) == ZD);
end
for ZI = 1:6
   DT = DT + (mean(DL(DL(:, 1) * 3 + DL(:, 2) == ZI, 3:4)) - GM)' * ...
             (mean(DL(DL(:, 1) * 3 + DL(:, 2) == ZI, 3:4)) - GM)  * ...
             nnz(DL(:, 1) * 3 + DL(:, 2) == ZI);
end
DT = DT - T - D
E = (DL(:, 3:4) - GM)' * (DL(:, 3:4) - GM) - D - T - DT
% determininants (det) as the matrix analogue of variance
LT  = det(E) / det(T  + E)
LD  = det(E) / det(D  + E)
LDT = det(E) / det(DT + E)
FT  = ((1 - LT  ^ (1/1)) / LT  ^ (1/1)) * (11 / 2)
FD  = ((1 - LD  ^ (1/2)) / LD  ^ (1/2)) * (22 / 4)
FDT = ((1 - LDT ^ (1/2)) / LDT ^ (1/2)) * (22 / 4)
ST  = 1 - fcdf(FT,  2, 11)
SD  = 1 - fcdf(FD,  4, 22)
SDT = 1 - fcdf(FDT, 4, 22)



MANOVA and MANCOVA
applicability:

● MANOVA works best with highly negatively 
correlated DVs and acceptably with moderately 
(pos. or neg.) correlated Dvs; wasteful if very 
highly pos. related (no improved prediction) or 
uncorrelated (no advant. over ANOVA)
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MANOVA and MANCOVA
statistical inference (Wilks Λ, Hotelling, Pillai, Roy’s gcr):

● identical for factors with two levels
● for more than two levels: Wilks, Hotelling, Pillai pool dimensions, 

Roy considers first dimension / contrast
● Wilks: likelihood statistics for equal population mean vectors vs. 

group mean vectors in the sample
Hotelling: pooled ratio of effect to error variance
Pillai: pooled effect variances

● Wilks, Hotelling, Roy: most robust if strongest contrib. fr. first contr.
● Pillai more robust (against small sample sizes, inhomog. of var.)
● → use Wilks unless there is reason to use Pillai
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MANOVA and MANCOVA
strategies for assessing DVs:

● if DVs are uncorrelated UniANOVA is acceptable
● if DVs are correlated, use stepdown analysis 

(analogue to sequential regression) in combination 
with UniANOVA and evaluate possible pattern:
(1) sign. in UniANOVA, nonsign. stepdown →
variance already explained by higher-order DVs
(2) nonsign. in UniANOVA, sign. stepdown →
DV takes on «importance» from higher-order DVs
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Questions?
Comments?



MANOVA: Profile analysis
● special application of the MANOVA with several 

DVs measured on the same scale: (1) same DV 
over time (repeated measures), (2) several DVs 
(e.g., WISC-subtests) at the same time, (3) 
several DVs over time (doubly multivar. design) 
or (4) compare profiles of two groups (POMS, 
WISC, neuropsych. battery)
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MANOVA: Profile analysis
typical research questions:

● testing parallelism of profiles through interaction 
(group × test)

● overall group performance differences
● flatness of profiles (lack of diff. between subtests)
● «typical» profiles for different groups (mean prof.)

UNIVERSITY OF BERGEN

PAGE 58



MANOVA: Profile analysis
assumptions and limitations:

● N per factor level should be ≥ number of levels
● robust against unequal cell sizes and non-normal.
● for equal cell sizes, homogeneity of variance-

covariance matr. doesn’t have to be evaluated
● extreme sensitivity to outliers
● non-linearity → loss of power for parallelism-test
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MANOVA: Profile analysis
fundamental equations and calculation:
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D = [1, 7, 10, 6, 5; ...
     1, 8,  9, 5, 7; ...
     1, 5, 10, 5, 8; ...
     1, 6, 10, 6, 8; ...
     1, 7,  8, 7, 9; ...
     2, 4,  4, 4, 4; ...
     2, 6,  4, 5, 3; ...
     2, 5,  5, 5, 6; ... 
     2, 6,  6, 6, 7; ...
     2, 4,  5, 6, 5; ...
     3, 3,  1, 1, 2; ...
     3, 5,  3, 1, 5; ...
     3, 4,  2, 2, 5; ...
     3, 7,  1, 2, 4; ...
     3, 6,  3, 3, 3]

GM = mean(D(:,            2:5), 1)
M1 = mean(D(D(:, 1) == 1, 2:5), 1)
M2 = mean(D(D(:, 1) == 2, 2:5), 1)
M3 = mean(D(D(:, 1) == 3, 2:5), 1)

figure; hold on; xlim([0.5 4.5]);
plot([1 2 3 4], M1, 'r*-')
plot([1 2 3 4], M2, 'b*-')
plot([1 2 3 4], M3, 'k*-')

SSbg = 5 * 4 * ((mean(M1, 2) - mean(GM, 2)) ^ 2 + ...
                (mean(M2, 2) - mean(GM, 2)) ^ 2 + ...
                (mean(M3, 2) - mean(GM, 2)) ^ 2)
SSwg = 4 * sum((mean(D(:, 2:5), 2) -       ...
               [repmat(mean(M1, 2), 5, 1); ...
                repmat(mean(M2, 2), 5, 1); ...
                repmat(mean(M3, 2), 5, 1)]) .^ 2)
Fg = (SSbg / 2) / (SSwg / 12)
Sg = 1 - fcdf(Fg, 2, 12)

% calculate differences among tests / ratings
DD = [D(:, 1), -diff(D(:, 2:5), 1, 2)]
DGM = mean(DD(:,             2:4), 1)
DM1 = mean(DD(DD(:, 1) == 1, 2:4), 1)
DM2 = mean(DD(DD(:, 1) == 2, 2:4), 1)
DM3 = mean(DD(DD(:, 1) == 3, 2:4), 1)



MANOVA: Profile analysis
fundamental equations and calculation (cont.):
Swg = (DD(:, 2:4) - [repmat(DM1, 5, 1); repmat(DM2, 5, 1); repmat(DM3, 5, 1)])' * ...
      (DD(:, 2:4) - [repmat(DM1, 5, 1); repmat(DM2, 5, 1); repmat(DM3, 5, 1)])
Sbg = 5 * ((DM1 - DGM)' * (DM1 - DGM) + (DM2 - DGM)' * (DM2 - DGM) + ...
           (DM3 - DGM)' * (DM3 - DGM))

LP = det(Swg) / det(Swg + Sbg)
% it is not clear to me why the s in (1/s) is set to 2; however,
% the F value is numerically identical to the SAS output (p. 367)
FP = (1 - LP ^ (1/2)) / (LP ^ (1/2)) * (20 / 6)
SP = 1 - fcdf(FP, 6, 20)
etapP = 1 - LP ^ (1/2)

T2F = 15 * DGM * inv(Swg) * DGM'
FF = (15 - 3 - 4 + 2) / (4 - 1) * T2F
SF = 1 - fcdf(FF, 3, 10)
LF = 1 / (1 + T2F)
etapF = 1 - LF ^ (1 / 1)
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NB: parallelism is the H0, 
profiles are parallel if there are 
no group differences in profile

NB: flatness is also the H0, 
profiles are flat if there are no 
differences between scores
within the profile



MANOVA: Profile analysis
important issues:

● univariate repeated-measure analyses require sphericity (if 
more than two levels; for longitudinal studies, sphericity is 
unlikely; the assumption would be similar correl. between 5 
to 6 vs. 5 to 10 years of age)

● univariate analyses: sphericity-correction using 
Greenhouse-Geisser, Huynh-Feldt

● multivariate analyses require larger samples
● best alternative: trend analysis (polynomial)
● linear discrim. analysis: classification of profiles
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Questions?
Comments?



Summary
● variable types and statistical methods
● statistical tests: assumptions and procedures
● ANOVA: background and calculation (Excel)
● ANOVA: more backgr., typical designs, contrasts
● assumptions for using parametric tests (refresher)
● ANCOVA
● MANOVA and MANCOVA
● MANOVA: profile analysis
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Thank you for your 
interest and your 
attention!
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